Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug 19;13(16):1442-50.
doi: 10.1016/s0960-9822(03)00544-x.

A novel role for FAK as a protease-targeting adaptor protein: regulation by p42 ERK and Src

Affiliations
Free article

A novel role for FAK as a protease-targeting adaptor protein: regulation by p42 ERK and Src

Neil O Carragher et al. Curr Biol. .
Free article

Abstract

Cell migration on extracellular matrix requires the turnover of integrin-dependent adhesions. The nonreceptor tyrosine kinases Src and FAK regulate focal-adhesion turnover by poorly understood mechanisms. ERK/MAP kinase-mediated activation of the protease Calpain 2 also promotes focal-adhesion turnover; however, it is not known if this is linked to the activities of Src and FAK. Calpain 2 has previously been demonstrated to colocalize with focal-adhesion structures and can cleave several focal-adhesion complex components, including FAK. Studies utilizing Calpain inhibitors or Calpain-deficient cells confirm that Calpain's role in regulating focal-adhesion turnover is necessary for cell migration. We have identified a novel and kinase-independent function for FAK as an adaptor molecule that mediates the assembly of a complex consisting of at least Calpain 2 and p42ERK. Mutation of proline residues (Pro2) in the amino-terminal region of FAK blocks direct binding with Calpain 2 and also prevents formation of the Calpain 2/p42ERK complex in cells. We show that both complex formation and MEK/ERK activity are associated with Calpain-mediated proteolysis of FAK and focal adhesion turnover during transformation and migration. Furthermore, FAK is necessary for recruiting both Calpain 2 and p42ERK/MAPK to peripheral adhesion sites facilitating maximal Calpain activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources