Activity-dependent remodeling of presynaptic inputs by postsynaptic expression of activated CaMKII
- PMID: 12873384
- DOI: 10.1016/s0896-6273(03)00422-7
Activity-dependent remodeling of presynaptic inputs by postsynaptic expression of activated CaMKII
Abstract
Competitive synaptic remodeling is an important feature of developmental plasticity, but the molecular mechanisms remain largely unknown. Calcium/calmodulin-dependent protein kinase II (CaMKII) can induce postsynaptic changes in synaptic strength. We show that postsynaptic CaMKII also generates structural synaptic rearrangements between cultured cortical neurons. Postsynaptic expression of activated CaMKII (T286D) increased the strength of transmission between pairs of pyramidal neuron by a factor of 4, through a modest increase in quantal amplitude and a larger increase in the number of synaptic contacts. Concurrently, T286D reduced overall excitatory synaptic density and increased the proportion of unconnected pairs. This suggests that connectivity from some synaptic partners was increased while other partners were eliminated. The enhancement of connectivity required activity and NMDA receptor activation, while the elimination did not. These data suggest that postsynaptic activation of CaMKII induces a structural remodeling of presynaptic inputs that favors the retention of active presynaptic partners.
Similar articles
-
Postsynaptic expression of homeostatic plasticity at neocortical synapses.J Neurosci. 2005 Mar 16;25(11):2895-905. doi: 10.1523/JNEUROSCI.5217-04.2005. J Neurosci. 2005. PMID: 15772349 Free PMC article.
-
Presynaptic CaMKII is necessary for synaptic plasticity in cultured hippocampal neurons.Neuron. 2004 Apr 8;42(1):129-41. doi: 10.1016/s0896-6273(04)00143-6. Neuron. 2004. PMID: 15066270
-
Transsynaptic signaling by activity-dependent cleavage of neuroligin-1.Neuron. 2012 Oct 18;76(2):396-409. doi: 10.1016/j.neuron.2012.07.006. Epub 2012 Oct 17. Neuron. 2012. PMID: 23083741 Free PMC article.
-
Calcium/calmodulin-dependent protein kinase II and synaptic plasticity.Curr Opin Neurobiol. 2004 Jun;14(3):318-27. doi: 10.1016/j.conb.2004.05.008. Curr Opin Neurobiol. 2004. PMID: 15194112 Review.
-
Regulation of synaptic transmission by presynaptic CaMKII and BK channels.Mol Neurobiol. 2008 Oct;38(2):153-66. doi: 10.1007/s12035-008-8039-7. Epub 2008 Aug 29. Mol Neurobiol. 2008. PMID: 18759010 Free PMC article. Review.
Cited by
-
Drosophila melanogaster as a model for lead neurotoxicology and toxicogenomics research.Front Genet. 2012 May 4;3:68. doi: 10.3389/fgene.2012.00068. eCollection 2012. Front Genet. 2012. PMID: 22586431 Free PMC article.
-
Activity-dependent synaptic GRIP1 accumulation drives synaptic scaling up in response to action potential blockade.Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):E3590-9. doi: 10.1073/pnas.1510754112. Epub 2015 Jun 24. Proc Natl Acad Sci U S A. 2015. PMID: 26109571 Free PMC article.
-
Synaptic reorganization in scaled networks of controlled size.J Neurosci. 2007 Dec 12;27(50):13581-9. doi: 10.1523/JNEUROSCI.3863-07.2007. J Neurosci. 2007. PMID: 18077670 Free PMC article.
-
All for One But Not One for All: Excitatory Synaptic Scaling and Intrinsic Excitability Are Coregulated by CaMKIV, Whereas Inhibitory Synaptic Scaling Is Under Independent Control.J Neurosci. 2017 Jul 12;37(28):6778-6785. doi: 10.1523/JNEUROSCI.0618-17.2017. Epub 2017 Jun 7. J Neurosci. 2017. PMID: 28592691 Free PMC article.
-
NMDA receptors mediate synaptic competition in culture.PLoS One. 2011;6(9):e24423. doi: 10.1371/journal.pone.0024423. Epub 2011 Sep 15. PLoS One. 2011. PMID: 21935408 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources