Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Aug;144(8):3382-98.
doi: 10.1210/en.2003-0192.

Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms

Affiliations
Comparative Study

Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms

Anthony J Lee et al. Endocrinology. 2003 Aug.

Abstract

We systematically characterized the oxidative metabolites of 17beta-estradiol and estrone formed by 15 human cytochrome P450 (CYP) isoforms. CYP1A1 had high activity for 17beta-estradiol 2-hydroxylation, followed by 15alpha-, 6alpha-, 4-, and 7alpha-hydroxylation. However, when estrone was the substrate, CYP1A1 formed more 4-hydroxyestrone than 15alpha- or 6alpha-hydroxyestrone, with 2-hydroxyestrone as the major metabolite. CYP1A2 had the highest activity for the 2-hydroxylation of both 17beta-estradiol and estrone, although it also had considerable activity for their 4-hydroxylation (9-13% of 2-hydroxylation). CYP1B1 mainly catalyzed the formation of catechol estrogens, with 4-hydroxyestrogens predominant. CYP2A6, 2B6, 2C8, 2C9, 2C19, and 2D6 each showed a varying degree of low catalytic activity for estrogen 2-hydroxylation, whereas CYP2C18 and CYP2E1 did not show any detectable estrogen-hydroxylating activity. CYP3A4 had strong activity for the formation of 2-hydroxyestradiol, followed by 4-hydroxyestradiol and an unknown polar metabolite, and small amounts of 16alpha- and 16beta-hydroxyestrogens were also formed. The ratio of 4- to 2-hydroxylation of 17beta-estradiol or estrone with CYP3A4 was 0.22 or 0.51, respectively. CYP3A5 had similar catalytic activity for the formation of 2- and 4- hydroxyestrogens. Notably, CYP3A5 had an unusually high ratio of 4- to 2-hydroxylation of 17beta-estradiol or estrone (0.53 or 1.26, respectively). CYP3A4 and 3A5 also catalyzed the formation of nonpolar estrogen metabolite peaks (chromatographically less polar than estrone). CYP3A7 had a distinct catalytic activity for the 16alpha-hydroxylation of estrone, but not 17beta-estradiol. CYP4A11 had little catalytic activity for the metabolism of 17beta-estradiol and estrone. In conclusion, many human CYP isoforms are involved in the oxidative metabolism of 17beta-estradiol and estrone, with a varying degree of catalytic activity and distinct regioselectivity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms