Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul 4;115(1):1-9.
doi: 10.1016/s0169-328x(03)00136-0.

Glutamate down-regulates GLAST expression through AMPA receptors in Bergmann glial cells

Affiliations

Glutamate down-regulates GLAST expression through AMPA receptors in Bergmann glial cells

Esther López-Bayghen et al. Brain Res Mol Brain Res. .

Abstract

The Na(+)-dependent glutamate/aspartate transporter GLAST plays a major role in the removal of glutamate from the synaptic cleft. Short-, as well as long-term changes in transporter activity are triggered by glutamate. An important locus of regulation is the density of transporter molecules at the plasma membrane. A substrate-dependent change in the translocation rate accounts for the short-term effect, whereas the mechanisms of long-term modulation are less understood. Using cultured chick cerebellar Bergmann glial cells, we report here that glutamate receptors mediate a substantial reduction in GLAST mRNA levels, suggesting a transcriptional level of regulation. Moreover, when the 5' proximal region of the GLAST gene was cloned and transfected into Bergmann glia cells, a decrease in promoter activity was induced by glutamate exposure. The use of specific pharmacological tools established the involvement of Ca(2+)-permeable alpha-amino 3-hydroxy-5-methyl-4-isoaxazolepropionate (AMPA) receptors via protein kinase C and c-Jun. These results demonstrate that GLAST is under transcriptional control through glutamate receptors activation, and further supports the participation of Bergmann glia cells in the modulation of glutamatergic transmission.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources