Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jun 15;258(2):432-42.
doi: 10.1016/s0012-1606(03)00126-x.

Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites

Affiliations
Free article
Comparative Study

Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites

Eric G Moss et al. Dev Biol. .
Free article

Erratum in

  • Dev Biol. 2003 Oct 15;262(2):361

Abstract

The heterochronic gene lin-28 is a regulator of developmental timing in the nematode Caenorhabditis elegans. It must be expressed in the first larval stage and downregulated by the second stage for normal development. This downregulation is mediated in part by lin-4, a 21-nt microRNA. If downregulation fails due to a mutation in a short sequence in the lin-28 3' UTR that is complementary to lin-4, then a variety of somatic cell lineages fail to progress normally in development. Here, we report that Lin-28 homologues exist in diverse animals, including Drosophila, Xenopus, mouse, and human. These homologues are characterized by the LIN-28 protein's unusual pairing of RNA-binding motifs: a cold shock domain (CSD) and a pair of retroviral-type CCHC zinc knuckles. Conservation of LIN-28 proteins shows them to be distinct from the other conserved family of CSD-containing proteins of animals, the Y-box proteins. Importantly, the LIN-28 proteins of Drosophila, Xenopus, and mouse each appear to be expressed and downregulated during development, consistent with a conserved role for this regulator of developmental timing. In addition, the extremely long 3' UTRs of mouse and human Lin-28 genes show extensive regions of sequence identity that contain sites complementary to the mammalian homologues of C. elegans lin-4 and let-7 microRNAs, suggesting that microRNA regulation is a conserved feature of the Lin-28 gene in diverse animals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms