PROSHIFT: protein chemical shift prediction using artificial neural networks
- PMID: 12766400
- DOI: 10.1023/a:1023060720156
PROSHIFT: protein chemical shift prediction using artificial neural networks
Abstract
The importance of protein chemical shift values for the determination of three-dimensional protein structure has increased in recent years because of the large databases of protein structures with assigned chemical shift data. These databases have allowed the investigation of the quantitative relationship between chemical shift values obtained by liquid state NMR spectroscopy and the three-dimensional structure of proteins. A neural network was trained to predict the (1)H, (13)C, and (15)N of proteins using their three-dimensional structure as well as experimental conditions as input parameters. It achieves root mean square deviations of 0.3 ppm for hydrogen, 1.3 ppm for carbon, and 2.6 ppm for nitrogen chemical shifts. The model reflects important influences of the covalent structure as well as of the conformation not only for backbone atoms (as, e.g., the chemical shift index) but also for side-chain nuclei. For protein models with a RMSD smaller than 5 A a correlation of the RMSD and the r.m.s. deviation between the predicted and the experimental chemical shift is obtained. Thus the method has the potential to not only support the assignment process of proteins but also help with the validation and the refinement of three-dimensional structural proposals. It is freely available for academic users at the PROSHIFT server: www.jens-meiler.de/proshift.html
Similar articles
-
SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network.J Biomol NMR. 2010 Sep;48(1):13-22. doi: 10.1007/s10858-010-9433-9. Epub 2010 Jul 14. J Biomol NMR. 2010. PMID: 20628786 Free PMC article.
-
EFG-CS: Predicting chemical shifts from amino acid sequences with protein structure prediction using machine learning and deep learning models.Protein Sci. 2024 Aug;33(8):e5096. doi: 10.1002/pro.5096. Protein Sci. 2024. PMID: 38979954 Free PMC article.
-
Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C' chemical shifts in peptides using density functional theory.Biopolymers. 2002 Dec 15;65(6):408-23. doi: 10.1002/bip.10276. Biopolymers. 2002. PMID: 12434429
-
Predicting 15N chemical shifts in proteins using the preceding residue-specific individual shielding surfaces from phi, psi i-1, and chi 1 torsion angles.J Biomol NMR. 2004 Apr;28(4):327-40. doi: 10.1023/B:JNMR.0000015397.82032.2a. J Biomol NMR. 2004. PMID: 14872125
-
Recent progress in understanding chemical shifts.Solid State Nucl Magn Reson. 1996 Apr;6(2):101-25. doi: 10.1016/0926-2040(95)01207-9. Solid State Nucl Magn Reson. 1996. PMID: 8784950 Review.
Cited by
-
Using quantum chemistry to estimate chemical shifts in biomolecules.Biophys Chem. 2020 Dec;267:106476. doi: 10.1016/j.bpc.2020.106476. Epub 2020 Sep 16. Biophys Chem. 2020. PMID: 33035752 Free PMC article. Review.
-
Mapping of protein structural ensembles by chemical shifts.J Biomol NMR. 2010 Oct;48(2):71-83. doi: 10.1007/s10858-010-9438-4. Epub 2010 Aug 1. J Biomol NMR. 2010. PMID: 20680402
-
Integrative Protein Modeling in RosettaNMR from Sparse Paramagnetic Restraints.Structure. 2019 Nov 5;27(11):1721-1734.e5. doi: 10.1016/j.str.2019.08.012. Epub 2019 Sep 12. Structure. 2019. PMID: 31522945 Free PMC article.
-
Atomic-level structure determination of amorphous molecular solids by NMR.Nat Commun. 2023 Aug 23;14(1):5138. doi: 10.1038/s41467-023-40853-2. Nat Commun. 2023. PMID: 37612269 Free PMC article.
-
The PROSECCO server for chemical shift predictions in ordered and disordered proteins.J Biomol NMR. 2017 Nov;69(3):147-156. doi: 10.1007/s10858-017-0145-2. Epub 2017 Nov 8. J Biomol NMR. 2017. PMID: 29119515 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources