Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May 15;423(6937):283-8.
doi: 10.1038/nature01614.

Attractor dynamics of network UP states in the neocortex

Affiliations

Attractor dynamics of network UP states in the neocortex

Rosa Cossart et al. Nature. .

Abstract

The cerebral cortex receives input from lower brain regions, and its function is traditionally considered to be processing that input through successive stages to reach an appropriate output. However, the cortical circuit contains many interconnections, including those feeding back from higher centres, and is continuously active even in the absence of sensory inputs. Such spontaneous firing has a structure that reflects the coordinated activity of specific groups of neurons. Moreover, the membrane potential of cortical neurons fluctuates spontaneously between a resting (DOWN) and a depolarized (UP) state, which may also be coordinated. The elevated firing rate in the UP state follows sensory stimulation and provides a substrate for persistent activity, a network state that might mediate working memory. Using two-photon calcium imaging, we reconstructed the dynamics of spontaneous activity of up to 1,400 neurons in slices of mouse visual cortex. Here we report the occurrence of synchronized UP state transitions ('cortical flashes') that occur in spatially organized ensembles involving small numbers of neurons. Because of their stereotyped spatiotemporal dynamics, we conclude that network UP states are circuit attractors--emergent features of feedback neural networks that could implement memory states or solutions to computational problems.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources