Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May;69(5):2899-905.
doi: 10.1128/AEM.69.5.2899-2905.2003.

In situ accessibility of Saccharomyces cerevisiae 26S rRNA to Cy3-labeled oligonucleotide probes comprising the D1 and D2 domains

Affiliations

In situ accessibility of Saccharomyces cerevisiae 26S rRNA to Cy3-labeled oligonucleotide probes comprising the D1 and D2 domains

João Inácio et al. Appl Environ Microbiol. 2003 May.

Abstract

Fluorescence in situ hybridization (FISH) has proven to be most useful for the identification of microorganisms. However, species-specific oligonucleotide probes often fail to give satisfactory results. Among the causes leading to low hybridization signals is the reduced accessibility of the targeted rRNA site to the oligonucleotide, mainly for structural reasons. In this study we used flow cytometry to determine whole-cell fluorescence intensities with a set of 32 Cy3-labeled oligonucleotide probes covering the full length of the D1 and D2 domains in the 26S rRNA of Saccharomyces cerevisiae PYCC 4455(T). The brightest signal was obtained with a probe complementary to positions 223 to 240. Almost half of the probes conferred a fluorescence intensity above 60% of the maximum, whereas only one probe could hardly detect the cells. The accessibility map based on the results obtained can be extrapolated to other yeasts, as shown experimentally with 27 additional species (14 ascomycetes and 13 basidiomycetes). This work contributes to a more rational design of species-specific probes for yeast identification and monitoring.

PubMed Disclaimer

Figures

FIG. 1.
FIG. 1.
Fluorescence intensities of all oligonucleotide probes, standardized to that of the brightest probe (D-223), indicated in a model of the S. cerevisiae 26S rRNA secondary structure in which the D1 and D2 domains (delimited by the NL1 and NL4 primer target sites) are enlarged. The color coding indicates differences in the level of Cy3 probe-conferred fluorescence. The secondary structure is adapted from the European rRNA database (http://rrna.uia.ac.be).
FIG. 2.
FIG. 2.
Comparison of in situ hybridization signals for S. cerevisiae and other yeast species. The probes selected fall into different accessibility classes in the S. cerevisiae 26S rRNA D1 and D2 domains and have an identical target site in that region for all of the yeasts indicated.
FIG. 3.
FIG. 3.
Comparison of the relative in situ accessibilities (black line) of the S. cerevisiae 26S rRNA D1 and D2 domains and the average nucleotide substitution rates (gray) in yeasts.
FIG. 4.
FIG. 4.
Comparison of the accessibilities of homologous regions in S. cerevisiae 26S rRNA and E. coli 23S rRNA to Cy3-labeled probes.

Similar articles

Cited by

  • Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions.
    Narunsky-Haziza L, Sepich-Poore GD, Livyatan I, Asraf O, Martino C, Nejman D, Gavert N, Stajich JE, Amit G, González A, Wandro S, Perry G, Ariel R, Meltser A, Shaffer JP, Zhu Q, Balint-Lahat N, Barshack I, Dadiani M, Gal-Yam EN, Patel SP, Bashan A, Swafford AD, Pilpel Y, Knight R, Straussman R. Narunsky-Haziza L, et al. Cell. 2022 Sep 29;185(20):3789-3806.e17. doi: 10.1016/j.cell.2022.09.005. Cell. 2022. PMID: 36179670 Free PMC article.
  • Stress induced biofilm formation in Propionibacterium acidipropionici and use in propionic acid production.
    Cavero-Olguin VH, Hatti-Kaul R, Cardenas-Alegria OV, Gutierrez-Valverde M, Alfaro-Flores A, Romero-Calle DX, Alvarez-Aliaga MT. Cavero-Olguin VH, et al. World J Microbiol Biotechnol. 2019 Jun 24;35(7):101. doi: 10.1007/s11274-019-2679-9. World J Microbiol Biotechnol. 2019. PMID: 31236717
  • An important step forward for the future development of an easy and fast procedure for identifying the most dangerous wine spoilage yeast, Dekkera bruxellensis, in wine environment.
    Branco P, Candeias A, Caldeira AT, González-Pérez M. Branco P, et al. Microb Biotechnol. 2019 Nov;12(6):1237-1248. doi: 10.1111/1751-7915.13422. Epub 2019 Jun 14. Microb Biotechnol. 2019. PMID: 31197952 Free PMC article.
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa.
    Zamora JC, Svensson M, Kirschner R, Olariaga I, Ryman S, Parra LA, Geml J, Rosling A, Adamčík S, Ahti T, Aime MC, Ainsworth AM, Albert L, Albertó E, García AA, Ageev D, Agerer R, Aguirre-Hudson B, Ammirati J, Andersson H, Angelini C, Antonín V, Aoki T, Aptroot A, Argaud D, Sosa BIA, Aronsen A, Arup U, Asgari B, Assyov B, Atienza V, Bandini D, Baptista-Ferreira JL, Baral HO, Baroni T, Barreto RW, Beker H, Bell A, Bellanger JM, Bellù F, Bemmann M, Bendiksby M, Bendiksen E, Bendiksen K, Benedek L, Bérešová-Guttová A, Berger F, Berndt R, Bernicchia A, Biketova AY, Bizio E, Bjork C, Boekhout T, Boertmann D, Böhning T, Boittin F, Boluda CG, Boomsluiter MW, Borovička J, Brandrud TE, Braun U, Brodo I, Bulyonkova T, Burdsall HH Jr, Buyck B, Burgaz AR, Calatayud V, Callac P, Campo E, Candusso M, Capoen B, Carbó J, Carbone M, Castañeda-Ruiz RF, Castellano MA, Chen J, Clerc P, Consiglio G, Corriol G, Courtecuisse R, Crespo A, Cripps C, Crous PW, da Silva GA, da Silva M, Dam M, Dam N, Dämmrich F, Das K, Davies L, De Crop E, De Kesel A, De Lange R, De Madrignac Bonzi B, Dela Cruz TEE, Delgat L, Demoulin V, Desjardin DE, Diederich P, Dima B, Dios MM, Divakar PK, Douanla-Meli C, Douglas B, Drechs… See abstract for full author list ➔ Zamora JC, et al. IMA Fungus. 2018 Jun;9(1):167-175. doi: 10.5598/imafungus.2018.09.01.10. Epub 2018 May 24. IMA Fungus. 2018. PMID: 30018877 Free PMC article.
  • A Transcriptome-Targeting EcoChip for Assessing Functional Mycodiversity.
    Peršoh D, Weig AR, Rambold G. Peršoh D, et al. Microarrays (Basel). 2011 Oct 31;1(1):25-41. doi: 10.3390/microarrays1010025. Microarrays (Basel). 2011. PMID: 27605333 Free PMC article.

References

    1. Amann, R., and W. Ludwig. 2000. Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol. Rev. 24:555-565. - PubMed
    1. Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56:1919-1925. - PMC - PubMed
    1. Amann, R. I., W. Ludwig, and K.-H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143-169. - PMC - PubMed
    1. Crockett, A. O., and C. T. Wittwer. 2001. Fluorescein-labeled oligonucleotides for real-time PCR: using the inherent quenching of deoxyguanosine nucleotides. Anal. Biochem. 290:89-97. - PubMed
    1. Fell, J. W., T. Boekhout, A. Fonseca, G. Scorzetti, and A. Statzell-Tallman. 2000. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int. J. Syst. E vol. Microbiol. 50:1351-1371. - PubMed

Publication types

LinkOut - more resources