Interactions with aromatic rings in chemical and biological recognition
- PMID: 12645054
- DOI: 10.1002/anie.200390319
Interactions with aromatic rings in chemical and biological recognition
Erratum in
- Angew Chem Int Ed Engl. 2003 Sep 15;42(35):4120
Abstract
Intermolecular interactions involving aromatic rings are key processes in both chemical and biological recognition. Their understanding is essential for rational drug design and lead optimization in medicinal chemistry. Different approaches-biological studies, molecular recognition studies with artificial receptors, crystallographic database mining, gas-phase studies, and theoretical calculations-are pursued to generate a profound understanding of the structural and energetic parameters of individual recognition modes involving aromatic rings. This review attempts to combine and summarize the knowledge gained from these investigations. The review focuses mainly on examples with biological relevance since one of its aims it to enhance the knowledge of molecular recognition forces that is essential for drug development.
Similar articles
-
Evidence for a strong selenium-aromatic interaction derived from crystallographic data and ab initio quantum chemical calculations.Biopolymers. 2006 Dec 15;83(6):595-613. doi: 10.1002/bip.20592. Biopolymers. 2006. PMID: 16948120
-
Aromatic rings in chemical and biological recognition: energetics and structures.Angew Chem Int Ed Engl. 2011 May 16;50(21):4808-42. doi: 10.1002/anie.201007560. Epub 2011 Apr 28. Angew Chem Int Ed Engl. 2011. PMID: 21538733 Review.
-
Carbohydrate-aromatic interactions.Acc Chem Res. 2013 Apr 16;46(4):946-54. doi: 10.1021/ar300024d. Epub 2012 Jun 15. Acc Chem Res. 2013. PMID: 22704792
-
Anion-pi interactions.Chem Soc Rev. 2008 Jan;37(1):68-83. doi: 10.1039/b614208g. Epub 2007 Sep 12. Chem Soc Rev. 2008. PMID: 18197334 Review.
-
Evidence for a strong sulfur-aromatic interaction derived from crystallographic data.Biopolymers. 2000 Mar;53(3):233-48. doi: 10.1002/(SICI)1097-0282(200003)53:3<233::AID-BIP3>3.0.CO;2-4. Biopolymers. 2000. PMID: 10679628
Cited by
-
Enterohaemorrhagic Escherichia coli exploits a tryptophan switch to hijack host f-actin assembly.Structure. 2012 Oct 10;20(10):1692-703. doi: 10.1016/j.str.2012.07.015. Epub 2012 Aug 23. Structure. 2012. PMID: 22921828 Free PMC article.
-
Anion-templated synthesis of a switchable fluorescent [2]catenane with sulfate sensing capability.Chem Sci. 2023 Dec 18;15(5):1796-1809. doi: 10.1039/d3sc05086f. eCollection 2024 Jan 31. Chem Sci. 2023. PMID: 38303949 Free PMC article.
-
Physical Mechanisms Governing Substituent Effects on Arene-Arene Interactions in a Protein Milieu.J Phys Chem B. 2020 Jul 30;124(30):6529-6539. doi: 10.1021/acs.jpcb.0c03778. Epub 2020 Jul 20. J Phys Chem B. 2020. PMID: 32610016 Free PMC article.
-
Functional droplets that recognize, collect, and transport debris on surfaces.Sci Adv. 2016 Oct 28;2(10):e1601462. doi: 10.1126/sciadv.1601462. eCollection 2016 Oct. Sci Adv. 2016. PMID: 27819054 Free PMC article.
-
Aromatic interactions as control elements in stereoselective organic reactions.Acc Chem Res. 2013 Apr 16;46(4):979-89. doi: 10.1021/ar3000794. Epub 2012 Jul 24. Acc Chem Res. 2013. PMID: 22827883 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources