Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Mar;88(2):297-302.
doi: 10.1113/eph8802469.

Cerebral metabolism is influenced by muscle ischaemia during exercise in humans

Affiliations
Free article

Cerebral metabolism is influenced by muscle ischaemia during exercise in humans

Mads K Dalsgaard et al. Exp Physiol. 2003 Mar.
Free article

Abstract

Maximal exercise reduces the cerebral metabolic ratio (O2/(glucose + 1/2 lactate)) to < 4 from a resting value close to 6, and only part of this decrease is explained by the 'intent' to exercise. This study evaluated whether sensory stimulation of brain by muscle ischaemia would reduce the cerebral metabolic ratio. In 10 healthy human subjects the cerebral arterial-venous differences (a-v differences) for O2, glucose and lactate were assessed before, during and after three bouts of 10 min cycling with equal workload: (1) control exercise at light intensity, (2) exercise that elicited a high rating of perceived exertion due to a 100 mmHg thigh cuff, and (3) exercise followed by 5 min of post-exercise muscle ischaemia that increased blood pressure by approximately 20 %. Control exercise did not significantly affect the a-v differences. However, during the recovery from exercise with thigh cuffs the cerebral metabolic ratio decreased from a resting value of 5.4 +/- 0.2 to 4.0 +/- 0.4 (mean +/- S.E.M.; P < 0.05) as a discrete lactate efflux from the brain at rest shifted to a slight uptake. Also, following post-exercise muscle ischaemia, the cerebral metabolic ratio decreased to 4.5 +/- 0.3 (P < 0.05). The results support the hypothesis that during exercise, cerebral metabolism is influenced both by the mental effort to exercise and by sensory input from skeletal muscles.

PubMed Disclaimer

Similar articles

Cited by

Publication types