Decomposing gene expression into cellular processes
- PMID: 12603020
- DOI: 10.1142/9789812776303_0009
Decomposing gene expression into cellular processes
Abstract
We propose a probabilistic model for cellular processes, and an algorithm for discovering them from gene expression data. A process is associated with a set of genes that participate in it; unlike clustering techniques, our model allows genes to participate in multiple processes. Each process may be active to a different degree in each experiment. The expression measurement for gene g in array a is a sum, over all processes in which g participates, of the activity levels of these processes in array a. We describe an iterative procedure, based on the EM algorithm, for decomposing the expression matrix into a given number of processes. We present results on Yeast gene expression data, which indicate that our approach identifies real biological processes.
Similar articles
-
Rich probabilistic models for gene expression.Bioinformatics. 2001;17 Suppl 1:S243-52. doi: 10.1093/bioinformatics/17.suppl_1.s243. Bioinformatics. 2001. PMID: 11473015
-
Learning gene functional classifications from multiple data types.J Comput Biol. 2002;9(2):401-11. doi: 10.1089/10665270252935539. J Comput Biol. 2002. PMID: 12015889
-
Possibilistic approach for biclustering microarray data.Comput Biol Med. 2007 Oct;37(10):1426-36. doi: 10.1016/j.compbiomed.2007.01.005. Epub 2007 Mar 8. Comput Biol Med. 2007. PMID: 17346690
-
Artificial intelligence techniques for bioinformatics.Appl Bioinformatics. 2002;1(4):191-222. Appl Bioinformatics. 2002. PMID: 15130837 Review.
-
Unsupervised pattern recognition: an introduction to the whys and wherefores of clustering microarray data.Brief Bioinform. 2005 Dec;6(4):331-43. doi: 10.1093/bib/6.4.331. Brief Bioinform. 2005. PMID: 16420732 Review.
Cited by
-
DENSE: efficient and prior knowledge-driven discovery of phenotype-associated protein functional modules.BMC Syst Biol. 2011 Oct 24;5:172. doi: 10.1186/1752-0509-5-172. BMC Syst Biol. 2011. PMID: 22024446 Free PMC article.
-
Bayesian biclustering of gene expression data.BMC Genomics. 2008;9 Suppl 1(Suppl 1):S4. doi: 10.1186/1471-2164-9-S1-S4. BMC Genomics. 2008. PMID: 18366617 Free PMC article.
-
Reverse engineering dynamic temporal models of biological processes and their relationships.Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12511-6. doi: 10.1073/pnas.1006283107. Epub 2010 Jun 22. Proc Natl Acad Sci U S A. 2010. PMID: 20571120 Free PMC article.
-
Extracting expression modules from perturbational gene expression compendia.BMC Syst Biol. 2008 Apr 10;2:33. doi: 10.1186/1752-0509-2-33. BMC Syst Biol. 2008. PMID: 18402676 Free PMC article.
-
Automation of gene assignments to metabolic pathways using high-throughput expression data.BMC Bioinformatics. 2005 Aug 31;6:217. doi: 10.1186/1471-2105-6-217. BMC Bioinformatics. 2005. PMID: 16135255 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases