Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov;6(5):609-14.

The organotypic multicellular spheroid is a relevant three-dimensional model to study adenovirus replication and penetration in human tumors in vitro

Affiliations
  • PMID: 12409259
Free article

The organotypic multicellular spheroid is a relevant three-dimensional model to study adenovirus replication and penetration in human tumors in vitro

Jacques Grill et al. Mol Ther. 2002 Nov.
Free article

Abstract

The use of adenoviruses for gene transfer and as oncolytic agents is currently receiving widespread attention. As specific constraints to adenovirus distribution and spread cannot be studied in cell cultures, there is a need for an in vitro three-dimensional (3D) model mimicking the in vivo biology of tumors. We studied the interactions between tumor and adenoviruses using multicellular spheroids grown from primary brain tumor material. Using beta-galactosidase and luciferase reporter genes expressed by replication-defective adenoviruses, we showed that infection was restricted to the first layer of cells. Using a replication-competent adenovirus expressing the luciferase gene, we showed that transgene expression in the spheroid was considerably enhanced and that viral spreading deep into the 3D structure took place. In addition, a tetrazolium salt-based metabolic assay could be used to compare the oncolytic activity of different concentrations of replication-competent adenoviruses. We can conclude that organotypic spheroids offer a versatile in vitro system for studying distribution, spread, and oncolysis by adenoviruses in a clinically relevant model.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources