Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
- PMID: 12387915
- DOI: 10.1016/s0025-5564(02)00108-6
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
Abstract
A precise definition of the basic reproduction number, R0, is presented for a general compartmental disease transmission model based on a system of ordinary differential equations. It is shown that, if R0<1, then the disease free equilibrium is locally asymptotically stable; whereas if R0>1, then it is unstable. Thus, R0 is a threshold parameter for the model. An analysis of the local centre manifold yields a simple criterion for the existence and stability of super- and sub-threshold endemic equilibria for R0 near one. This criterion, together with the definition of R0, is illustrated by treatment, multigroup, staged progression, multistrain and vector-host models and can be applied to more complex models. The results are significant for disease control.
Similar articles
-
The global stability of an SIRS model with infection age.Math Biosci Eng. 2014 Jun;11(3):449-69. doi: 10.3934/mbe.2014.11.449. Math Biosci Eng. 2014. PMID: 24506548
-
Global dynamics of an SEIR epidemic model with saturating contact rate.Math Biosci. 2003 Sep;185(1):15-32. doi: 10.1016/s0025-5564(03)00087-7. Math Biosci. 2003. PMID: 12900140
-
Global dynamics of discrete mathematical models of tuberculosis.J Biol Dyn. 2024 Dec;18(1):2323724. doi: 10.1080/17513758.2024.2323724. Epub 2024 Mar 17. J Biol Dyn. 2024. PMID: 38493487
-
Perspectives on the basic reproductive ratio.J R Soc Interface. 2005 Sep 22;2(4):281-93. doi: 10.1098/rsif.2005.0042. J R Soc Interface. 2005. PMID: 16849186 Free PMC article. Review.
-
The basic reproduction number (R0) of measles: a systematic review.Lancet Infect Dis. 2017 Dec;17(12):e420-e428. doi: 10.1016/S1473-3099(17)30307-9. Epub 2017 Jul 27. Lancet Infect Dis. 2017. PMID: 28757186 Review.
Cited by
-
Short-term predictions and prevention strategies for COVID-19: A model-based study.Appl Math Comput. 2021 Sep 1;404:126251. doi: 10.1016/j.amc.2021.126251. Epub 2021 Apr 1. Appl Math Comput. 2021. PMID: 33828346 Free PMC article.
-
Understanding the Role of Environmental Transmission on COVID-19 Herd Immunity and Invasion Potential.Bull Math Biol. 2022 Sep 10;84(10):116. doi: 10.1007/s11538-022-01070-y. Bull Math Biol. 2022. PMID: 36088430 Free PMC article.
-
Impact of Information based Classification on Network Epidemics.Sci Rep. 2016 Jun 22;6:28289. doi: 10.1038/srep28289. Sci Rep. 2016. PMID: 27329348 Free PMC article.
-
Dynamic analysis of a mathematical model with health care capacity for COVID-19 pandemic.Chaos Solitons Fractals. 2020 Oct;139:110033. doi: 10.1016/j.chaos.2020.110033. Epub 2020 Jun 20. Chaos Solitons Fractals. 2020. PMID: 32834594 Free PMC article.
-
Numerical treatments for the optimal control of two types variable-order COVID-19 model.Results Phys. 2022 Nov;42:105964. doi: 10.1016/j.rinp.2022.105964. Epub 2022 Sep 5. Results Phys. 2022. PMID: 36092971 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources