A model for intramembranous ossification during fracture healing
- PMID: 12382977
- DOI: 10.1016/S0736-0266(02)00017-7
A model for intramembranous ossification during fracture healing
Abstract
We have developed a method to study the molecular basis of intramembranous fracture healing. Unlike intramedullary rods that permit rotation of the fractured bone segments, our murine model relies on an external fixation device to provide stabilization. In this study we compare stabilized fracture callus tissues with callus tissues from non-stabilized fractures during the inflammatory, soft callus, hard callus, and remodeling stages of healing. Histological analyses indicate that stabilized fractures heal with virtually no evidence of cartilage whereas non-stabilized fractures produce abundant cartilage at the fracture site. Expression patterns of collagen type IIa (colIIa) and osteocalcin (oc) reveal that mesenchymal cells at the fracture site commit to either a chondrogenic or an osteogenic lineage during the earliest stages of healing. The mechanical environment influences this cell fate decision, since mesenchymal cells in a stabilized fracture express oc and fail to express colIIa. Future studies will use this murine model of intramembranous fracture healing to explore, at a molecular level, how the mechanical environment exerts its influence on healing of a fracture.
Similar articles
-
Molecular aspects of healing in stabilized and non-stabilized fractures.J Orthop Res. 2001 Jan;19(1):78-84. doi: 10.1016/S0736-0266(00)00006-1. J Orthop Res. 2001. PMID: 11332624
-
Shared phenotypic expression of osteoblasts and chondrocytes in fracture callus.J Bone Miner Res. 1995 Apr;10(4):533-44. doi: 10.1002/jbmr.5650100405. J Bone Miner Res. 1995. PMID: 7610923
-
Genetic expression of extracellular matrix proteins correlates with histologic changes during fracture repair.J Bone Miner Res. 1992 Sep;7(9):1045-55. doi: 10.1002/jbmr.5650070907. J Bone Miner Res. 1992. PMID: 1414497
-
Effect of mechanical stability on fracture healing--an update.Injury. 2007 Mar;38 Suppl 1:S3-10. doi: 10.1016/j.injury.2007.02.005. Injury. 2007. PMID: 17383483 Review.
-
Biological fracture repair.Tijdschr Diergeneeskd. 1998 Oct 15;123(20):599-600. Tijdschr Diergeneeskd. 1998. PMID: 9810613 Review. No abstract available.
Cited by
-
Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3β/β-catenin pathway.Theranostics. 2020 Jan 1;10(1):17-35. doi: 10.7150/thno.36930. eCollection 2020. Theranostics. 2020. PMID: 31903103 Free PMC article.
-
Tibial fracture decreases oxygen levels at the site of injury.Iowa Orthop J. 2008;28:14-21. Iowa Orthop J. 2008. PMID: 19223943 Free PMC article.
-
Runx2 protein expression utilizes the Runx2 P1 promoter to establish osteoprogenitor cell number for normal bone formation.J Biol Chem. 2011 Aug 26;286(34):30057-70. doi: 10.1074/jbc.M111.241505. Epub 2011 Jun 15. J Biol Chem. 2011. PMID: 21676869 Free PMC article.
-
Unraveling macrophage contributions to bone repair.Bonekey Rep. 2013 Jun 26;2:373. doi: 10.1038/bonekey.2013.107. eCollection 2013. Bonekey Rep. 2013. PMID: 25035807 Free PMC article. Review.
-
Customized bioceramic scaffolds and metal meshes for challenging large-size mandibular bone defect regeneration and repair.Regen Biomater. 2023 Jun 7;10:rbad057. doi: 10.1093/rb/rbad057. eCollection 2023. Regen Biomater. 2023. PMID: 37359729 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources