Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Oct 9;1588(1):48-55.
doi: 10.1016/s0925-4439(02)00115-1.

Functional interaction of lithocholic acid conjugates with M3 muscarinic receptors on a human colon cancer cell line

Affiliations
Free article

Functional interaction of lithocholic acid conjugates with M3 muscarinic receptors on a human colon cancer cell line

Kunrong Cheng et al. Biochim Biophys Acta. .
Free article

Abstract

Lithocholic acid (LA) conjugates interact with M3 receptors, the muscarinic receptor subtype that modulates colon cancer cell proliferation. This observation prompted us to examine the action of bile acids on two human colon cancer cell lines: H508, which expresses M3 receptors, and SNU-C4, which does not. Cellular proliferation was determined using a colorimetric assay. Interaction with muscarinic receptors was determined by measuring inhibition of muscarinic radioligand binding and changes in cellular inositol phosphate (IP) formation. Lithocholyltaurine (LCT) caused a dose-dependent increase in H508 cell proliferation that was not observed in SNU-C4 cells. After a 6-day incubation with 300 microM LCT, H508 cell proliferation increased by 200% compared to control. Moreover, in H508 cells, LCT caused a dose-dependent inhibition of radioligand binding and an increase in IP formation. LCT did not alter the rate of apoptosis in H508 or SNU-C4 cells. These data indicate that, at concentrations achievable in the gut, LA derivatives interact with M3 muscarinic receptors on H508 human colon cancer cells, thereby causing an increase in IP formation and cell proliferation. This suggests a mechanism whereby alterations in intestinal bile acids may affect the growth of colon cancer cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources