Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov 8;277(45):42775-80.
doi: 10.1074/jbc.M205309200. Epub 2002 Aug 28.

Autocatalytic cleavage of ADAMTS-4 (Aggrecanase-1) reveals multiple glycosaminoglycan-binding sites

Affiliations
Free article

Autocatalytic cleavage of ADAMTS-4 (Aggrecanase-1) reveals multiple glycosaminoglycan-binding sites

Carl R Flannery et al. J Biol Chem. .
Free article

Abstract

ADAMTS-4, also referred to as aggrecanase-1, is a glutamyl endopeptidase capable of generating catabolic fragments of aggrecan analogous to those released from articular cartilage during degenerative joint diseases such as osteoarthritis. Efficient aggrecanase activity requires the presence of sulfated glycosaminoglycans (GAGs) attached to the aggrecan core protein, implying the contribution of substrate recognition/binding site(s) to ADAMTS-4 activity. In the present study, we demonstrate that full-length ADAMTS-4 (M(r) approximately 68,000) undergoes autocatalytic C-terminal truncation to generate two discrete isoforms (M(r) approximately 53,000 and M(r) approximately 40,000), which exhibit a marked reduction in affinity of binding to sulfated GAGs. C-terminal sequencing and mass analyses revealed that the GAG-binding thrombospondin type I motif was retained following autocatalysis, indicating that sites present in the C-terminal cysteine (cys)-rich and/or spacer domains also effect binding of full-length ADAMTS-4 to sulfated GAGs. Binding-competition experiments conducted using native and deglycosylated aggrecan provided direct evidence for interaction of the ADAMTS-4 cysteine-rich/spacer domains with aggrecan GAGs. Furthermore, synthetic peptides mimicking putative (consensus) GAG-binding sequences located within the ADAMTS-4 cysteine-rich and spacer domains competitively blocked binding of sulfated GAGs to full-length ADAMTS-4, thereby identifying multiple GAG-binding sites, which may contribute to the regulation of ADAMTS-4 function.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources