Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Jul;41(4):224-31.
doi: 10.1007/s00294-002-0300-4. Epub 2002 Jun 15.

Role of RNA surveillance proteins Upf1/CpaR, Upf2 and Upf3 in the translational regulation of yeast CPA1 gene

Affiliations
Comparative Study

Role of RNA surveillance proteins Upf1/CpaR, Upf2 and Upf3 in the translational regulation of yeast CPA1 gene

F Messenguy et al. Curr Genet. 2002 Jul.

Abstract

Gene CPA1, encoding one of the subunits of carbamoylphosphate synthetase (CPSase A) is subject to a translational control by arginine of which the essential element is a 25 amino acid peptide encoded by the CPA1 messenger. The peptide is the product of an open reading frame located upstream (uORF) of the coding phase of the gene, within a 250 nucleotide leader. In the past, a series of mutations impairing the repression of gene CPA1 by arginine had been selected in vivo. Most of the mutations were located in the CPA1 uORF, but mutations unlinked to the CPA1 gene were also isolated and mapped in a gene called CPAR. In this work, we show that the CPAR gene is identical to the UPF1 gene, encoding a protein responsible for the premature termination step of RNA surveillance by nonsense-mediated mRNA decay (NMD). Deletion of UPF1, or deletion of UPF2 and UPF3, the other genes involved in the NMD pathway, enhances the synthesis of CPSase A, whether arginine is present or not in the growth medium. The regulatory effect of the NMD protein complex is only observed when the uORF is present in the CPA1 messenger, indicating that the arginine-peptide repression mechanism and the RNA surveillance pathway are complementary mechanisms. Our results indicate that the NMD destabilizes the 5' end of the CPA1 message and this decay is strongly enhanced when arginine is present in the growth medium.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources