Calcium regulation in photoreceptors
- PMID: 12161344
- PMCID: PMC1995662
- DOI: 10.2741/A896
Calcium regulation in photoreceptors
Abstract
In this review we describe some of the remarkable and intricate mechanisms through which the calcium ion (Ca2+) contributes to detection, transduction and synaptic transfer of light stimuli in rod and cone photoreceptors. The function of Ca2+ is highly compartmentalized. In the outer segment, Ca2+ controls photoreceptor light adaptation by independently adjusting the gain of phototransduction at several stages in the transduction chain. In the inner segment and synaptic terminal, Ca2+ regulates cells' metabolism, glutamate release, cytoskeletal dynamics, gene expression and cell death. We discuss the mechanisms of Ca2+ entry, buffering, sequestration, release from internal stores and Ca2+ extrusion from both outer and inner segments, showing that these two compartments have little in common with respect to Ca2+ homeostasis. We also investigate the various roles played by Ca2+ as an integrator of intracellular signaling pathways, and emphasize the central role played by Ca2+ as a second messenger in neuromodulation of photoreceptor signaling by extracellular ligands such as dopamine, adenosine and somatostatin. Finally, we review the intimate link between dysfunction in photoreceptor Ca2+ homeostasis and pathologies leading to retinal dysfunction and blindness.
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/095e/1995662/a9cb157b7ce7/nihms27060f1.gif)
![Figure 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/095e/1995662/bc79da408780/nihms27060f2.gif)
![Figure 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/095e/1995662/81f298591875/nihms27060f3.gif)
![Figure 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/095e/1995662/79b59a8e2a38/nihms27060f4.gif)
![Figure 5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/095e/1995662/d72bb84c1888/nihms27060f5.gif)
![Figure 6](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/095e/1995662/151810a84a09/nihms27060f6.gif)
Similar articles
-
Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.Adv Exp Med Biol. 2002;514:179-203. doi: 10.1007/978-1-4615-0121-3_11. Adv Exp Med Biol. 2002. PMID: 12596922 Review.
-
Ryanodine stores and calcium regulation in the inner segments of salamander rods and cones.J Physiol. 2003 Mar 15;547(Pt 3):761-74. doi: 10.1113/jphysiol.2002.035683. Epub 2003 Jan 24. J Physiol. 2003. PMID: 12562925 Free PMC article.
-
Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.Mol Vis. 2007 Jun 15;13:887-919. Mol Vis. 2007. PMID: 17653034 Free PMC article.
-
Differences in calcium homeostasis between retinal rod and cone photoreceptors revealed by the effects of voltage on the cGMP-gated conductance in intact cells.J Gen Physiol. 1994 Nov;104(5):909-40. doi: 10.1085/jgp.104.5.909. J Gen Physiol. 1994. PMID: 7876828 Free PMC article.
-
Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors.Prog Retin Eye Res. 2018 Nov;67:87-101. doi: 10.1016/j.preteyeres.2018.06.001. Epub 2018 Jun 6. Prog Retin Eye Res. 2018. PMID: 29883715 Free PMC article. Review.
Cited by
-
Photoreceptors in diabetic retinopathy.J Diabetes Investig. 2015 Jul;6(4):371-80. doi: 10.1111/jdi.12312. Epub 2015 Jan 7. J Diabetes Investig. 2015. PMID: 26221514 Free PMC article. Review.
-
Synaptic transmission at retinal ribbon synapses.Prog Retin Eye Res. 2005 Nov;24(6):682-720. doi: 10.1016/j.preteyeres.2005.04.002. Prog Retin Eye Res. 2005. PMID: 16027025 Free PMC article. Review.
-
Channeling Vision: CaV1.4-A Critical Link in Retinal Signal Transmission.Biomed Res Int. 2018 May 9;2018:7272630. doi: 10.1155/2018/7272630. eCollection 2018. Biomed Res Int. 2018. PMID: 29854783 Free PMC article. Review.
-
Characterization of Cav1.4 complexes (α11.4, β2, and α2δ4) in HEK293T cells and in the retina.J Biol Chem. 2015 Jan 16;290(3):1505-21. doi: 10.1074/jbc.M114.607465. Epub 2014 Dec 2. J Biol Chem. 2015. PMID: 25468907 Free PMC article.
-
Endoplasmic reticulum (ER) Ca2+-channel activity contributes to ER stress and cone death in cyclic nucleotide-gated channel deficiency.J Biol Chem. 2017 Jul 7;292(27):11189-11205. doi: 10.1074/jbc.M117.782326. Epub 2017 May 11. J Biol Chem. 2017. PMID: 28495882 Free PMC article.
References
-
- Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11–21. - PubMed
-
- Allbritton NL, Meyer T, Stryer LF. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992;258:1812–1815. - PubMed
-
- Bito H, Deisseroth K, Tsien RW. CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell. 1996;27:1203–1214. - PubMed
-
- Juusola M, French AS, Uusitalo RO, Weckstrom M. Information processing by graded-potential transmission through tonically active synapses. Trends Neurosci. 1996;19:292–297. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous