Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul;16(9):1102-4.
doi: 10.1096/fj.01-0825fje. Epub 2002 May 8.

Vitamin C matters: increased oxidative stress in cultured human aortic endothelial cells without supplemental ascorbic acid

Affiliations

Vitamin C matters: increased oxidative stress in cultured human aortic endothelial cells without supplemental ascorbic acid

Anthony R Smith et al. FASEB J. 2002 Jul.

Abstract

Because standard culture media for human aortic endothelial cells (HAEC) do not contain vitamin C, we hypothesized that HAEC may be under significant oxidative insult compared with the situation in vivo. To assess parameters of oxidative stress, intracellular vitamin C, glutathione (GSH), GSH/GSSG, and NAD(P)H/NAD(P)+ ratios, as well as oxidant appearance and oxidative damage, were measured in HAEC with or without vitamin C addition. The effect of vitamin C on eNOS activity was also determined. Results showed that HAEC without vitamin C treatment were essentially scorbutic. On addition of 100 mM vitamin C to the culture media, intracellular vitamin C levels increased and peaked at 6 h. A concomitant increase in the total GSH and the GSH/GSSG ratio was also observed; the NAD(P)H/NAD(P)+ ratio increased more slowly over the 24-h time course. Significantly lower (P <0.05) oxidant appearance and steady-state oxidative damage were also observed following vitamin C repletion. Vitamin C treatment increased eNOS activity by 600%. Thus, HAEC are scorbutic under normal culture conditions and exhibit higher oxidative stress than vitamin C repleted cells. Vitamin C supplementation should be considered when using cultured cells, especially when experimental endpoints are related to cellular redox status and eNOS activity.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources