Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar-Apr;383(3-4):649-62.
doi: 10.1515/BC.2002.067.

Irreversible thiol oxidation in carbonic anhydrase III: protection by S-glutathiolation and detection in aging rats

Affiliations
Free article

Irreversible thiol oxidation in carbonic anhydrase III: protection by S-glutathiolation and detection in aging rats

Robert J Mallis et al. Biol Chem. 2002 Mar-Apr.
Free article

Abstract

Proteins with reactive sulfhydryls are central to many important metabolic reactions and also contribute to a variety of signal transduction systems. In this report, we examine the mechanisms of oxidative damage to the two reactive sulfhydryls of carbonic anhydrase III. Hydrogen peroxide (H2O2), peroxy radicals, or hypochlorous acid (HOCl) produced irreversibly oxidized forms, primarily cysteine sulfinic acid or cysteic acid, of carbonic anhydrase III if glutathione (GSH) was not present. When GSH was approximately equimolar to protein thiols, irreversible oxidation was prevented. H202 and peroxyl radicals both generated S-glutathiolated carbonic anhydrase III via partially oxidized protein sulfhydryl intermediates, while HOCl did not cause S-glutathiolation. Thus, oxidative damage from H202 or AAPH was prevented by protein S-glutathiolation, while a direct reaction between GSH and oxidant likely prevents HOCl-mediated protein damage. In cultured rat hepatocytes, carbonic anhydrase III was rapidly S-glutathiolated by menadione. When hepatocyte glutathione was depleted, menadione instead caused irreversible oxidation. We hypothesized that normal depletion of glutathione in aged animals might also lead to an increase in irreversible oxidation. Indeed, both total protein extracts and carbonic anhydrase III contained significantly more cysteine sulfinic acid in older rats compared to young animals. These experiments show that, in the absence of sufficient GSH, oxidation reactions lead to irreversible protein sulfhydryl damage in purified proteins, cellular systems, and whole animals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources