Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May;301(2):494-500.
doi: 10.1124/jpet.301.2.494.

Role of cyclooxygenase-2 in neuronal cell cycle activity and glutamate-mediated excitotoxicity

Affiliations

Role of cyclooxygenase-2 in neuronal cell cycle activity and glutamate-mediated excitotoxicity

Mana Mirjany et al. J Pharmacol Exp Ther. 2002 May.

Abstract

In previous studies we found that neuronal overexpression of human cyclooxygenase (COX)-2 in transgenic mice potentiated excitotoxicity in vivo and in vitro. To clarify the molecular mechanisms involved in COX-2-mediated potentiation of excitotoxicity, we used cDNA microarray to identify candidate genes the expression of which is altered in the cerebral cortex of homozygous human hCOX-2 transgenic mice. We found that the mRNA expression of the cell cycle kinase (CDK) inhibitor-inhibitor kinase (INK) p18(INK4), a specific inhibitor of CDK 4,6, which controls the activation of the retinoblastoma (Rb) tumor suppressor protein phosphorylation, was decreased in the brain of adult hCOX-2 homozygous transgenics. Conversely, chronic treatment of the hCOX-2 transgenics with the preferential COX-2 inhibitor nimesulide reversed the hCOX-2-mediated decrease of cortical p18(INK4) mRNA expression in the brain. Further in vitro studies revealed that in primary cortico-hippocampal neurons derived from homozygous hCOX-2 transgenic mice, COX-2 overexpression accelerates glutamate-mediated apoptotic damage that is prevented by the CDK inhibitor flavoperidol. Moreover, treatment of wild-type primary cortico-hippocampal neuron cultures with the COX-2 preferential inhibitor nimesulide significantly attenuated glutamate-mediated apoptotic damage, which coincided with inhibition of glutamate-mediated pRb phosphorylation. These data indicate that hCOX-2 overexpression causes neuronal cell cycle deregulation in the brain and provides further rationale for targeting neuronal COX-2 in neuroprotective therapeutic research.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources