A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae
- PMID: 11805338
- PMCID: PMC117414
- DOI: 10.1073/pnas.012602299
A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae
Abstract
A high-density transposon mutagenesis strategy was applied to the Haemophilus influenzae genome to identify genes required for growth or viability. This analysis detected putative essential roles for the products of 259 ORFs of unknown function. Comparisons between complete genomes defined a subset of these proteins in H. influenzae having homologs in Mycobacterium tuberculosis that are absent in Saccharomyces cerevisiae, a distribution pattern that favors their use in development of antimicrobial therapeutics. Three genes within this set are essential for viability in other bacteria. Interfacing the set of essential gene products in H. influenzae with the distribution of homologs in other microorganisms can detect components of unrecognized cellular pathways essential in diverse bacteria. This genome-scale phenotypic analysis identifies potential roles for a large set of genes of unknown function.
Figures
Similar articles
-
Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung.Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16422-7. doi: 10.1073/pnas.0906627106. Epub 2009 Sep 4. Proc Natl Acad Sci U S A. 2009. PMID: 19805314 Free PMC article.
-
Genome scanning in Haemophilus influenzae for identification of essential genes.J Bacteriol. 1999 Aug;181(16):4961-8. doi: 10.1128/JB.181.16.4961-4968.1999. J Bacteriol. 1999. PMID: 10438768 Free PMC article.
-
Identification and analysis of essential genes in Haemophilus influenzae.Methods Mol Biol. 2008;416:27-44. doi: 10.1007/978-1-59745-321-9_3. Methods Mol Biol. 2008. PMID: 18392959 Review.
-
Lack of expression of the global regulator OxyR in Haemophilus influenzae has a profound effect on growth phenotype.Infect Immun. 1996 Nov;64(11):4618-29. doi: 10.1128/iai.64.11.4618-4629.1996. Infect Immun. 1996. PMID: 8890216 Free PMC article.
-
Genetic systems in Haemophilus influenzae.Methods Enzymol. 1991;204:321-42. doi: 10.1016/0076-6879(91)04016-h. Methods Enzymol. 1991. PMID: 1943781 Review. No abstract available.
Cited by
-
FindTargetsWEB: A User-Friendly Tool for Identification of Potential Therapeutic Targets in Metabolic Networks of Bacteria.Front Genet. 2019 Jul 4;10:633. doi: 10.3389/fgene.2019.00633. eCollection 2019. Front Genet. 2019. PMID: 31333719 Free PMC article.
-
Haemophilus influenzae: genetic variability and natural selection to identify virulence factors.Infect Immun. 2004 May;72(5):2457-61. doi: 10.1128/IAI.72.5.2457-2461.2004. Infect Immun. 2004. PMID: 15102751 Free PMC article. Review. No abstract available.
-
Ribosylnicotinamide kinase domain of NadR protein: identification and implications in NAD biosynthesis.J Bacteriol. 2002 Dec;184(24):6906-17. doi: 10.1128/JB.184.24.6906-6917.2002. J Bacteriol. 2002. PMID: 12446641 Free PMC article.
-
DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes.Nucleic Acids Res. 2009 Jan;37(Database issue):D455-8. doi: 10.1093/nar/gkn858. Epub 2008 Oct 30. Nucleic Acids Res. 2009. PMID: 18974178 Free PMC article.
-
Transformed Recombinant Enrichment Profiling Rapidly Identifies HMW1 as an Intracellular Invasion Locus in Haemophilus influenza.PLoS Pathog. 2016 Apr 28;12(4):e1005576. doi: 10.1371/journal.ppat.1005576. eCollection 2016 Apr. PLoS Pathog. 2016. PMID: 27124727 Free PMC article.
References
-
- Schena M, Shalon D, Davis R W, Brown P O. Science. 1995;270:467–470. - PubMed
-
- Mori H, Isono K, Horiuchi T, Miki T. Res Microbiol. 2000;151:121–128. - PubMed
-
- Ogasawara N. Res Microbiol. 2000;151:129–134. - PubMed
-
- Smith V, Chou K N, Lashkari D, Botstein D, Brown P O. Science. 1996;274:2069–2074. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources