Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar 29;277(13):11077-83.
doi: 10.1074/jbc.M111696200. Epub 2002 Jan 15.

Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling

Affiliations
Free article

Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling

Kim C Mansky et al. J Biol Chem. .
Free article

Abstract

Receptor activator of NF-kappaB ligand (RANKL) activates signaling pathways that regulate osteoclast differentiation, function, and survival. The microphthalmia transcription factor (MITF) is required for terminal differentiation of osteoclasts. To determine whether MITF could be a target of RANKL signaling, a phosphospecific MITF antibody directed against conserved residue Ser(307), a potential mitogen-activated protein kinase (MAPK) site, was produced. Using this antibody, we could demonstrate that MITF was rapidly and persistently phosphorylated upon stimulation of primary osteoclasts with RANKL and that phosphorylation of Ser(307) correlated with expression of the target gene tartrate-resistant acid phosphatase. MITF phosphorylation at Ser(307) also correlated with persistent activation of p38 MAPK, and p38 MAPK could utilize MITF Ser(307) as a substrate in vitro. The phosphorylation of MITF and activation of target gene expression in osteoclasts were blocked by p38 MAPK inhibitor SB203580. In transient transfections, a constitutively active Rac1 or MKK6 gene could collaborate with MITF to activate the tartrate-resistant acid phosphatase gene promoter dependent on Ser(307). Dominant negative p38 alpha and beta could inhibit the collaboration between upstream signaling components and MITF in the transient assays. These results indicate that MITF is a target for the RANKL signaling pathway in osteoclasts and that phosphorylation of MITF leads to an increase in osteoclast-specific gene expression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources