Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar 22;277(12):10452-8.
doi: 10.1074/jbc.M107551200. Epub 2002 Jan 9.

Hepatocyte growth factor induces ERK-dependent paxillin phosphorylation and regulates paxillin-focal adhesion kinase association

Affiliations
Free article

Hepatocyte growth factor induces ERK-dependent paxillin phosphorylation and regulates paxillin-focal adhesion kinase association

Zhen-Xiang Liu et al. J Biol Chem. .
Free article

Abstract

Hepatocyte growth factor (HGF) modulates cell adhesion, migration, and branching morphogenesis in cultured epithelial cells, events that require regulation of cell-matrix interactions. Using mIMCD-3 epithelial cells, we studied the effect of HGF on the focal adhesion proteins, focal adhesion kinase (FAK) and paxillin and their association. HGF was found to increase the tyrosine phosphorylation of paxillin and to a lesser degree FAK. In addition, HGF induced association of paxillin and activated ERK, correlating with a gel retardation of paxillin that was prevented with the ERK inhibitor U0126. The ability of activated ERK to phosphorylate and induce gel retardation of paxillin was confirmed in vitro in both full-length and amino-terminal paxillin. Several potential ERK phosphorylation sites in paxillin flank the paxillin-FAK association domains, so the ability of HGF to regulate paxillin-FAK association was examined. HGF induced an increase in paxillin-FAK association that was inhibited by pretreatment with U0126 and reproduced by in vitro phosphorylation of paxillin with ERK. The prevention of the FAK-paxillin association with U0126 correlated with an inhibition of the HGF-mediated FAK tyrosine phosphorylation and inhibition of HGF-dependent cell spreading and adhesion. An examination of cellular localization of FAK and paxillin demonstrated that HGF caused a condensation of focal adhesion complexes at the leading edges of cell processes and FAK-paxillin co-localization in these large complexes. Thus, these data suggest that HGF can induce serine/threonine phosphorylation of paxillin most probably mediated directly by ERK, resulting in the recruitment and activation of FAK and subsequent enhancement of cell spreading and adhesion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources