Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec 14;132(1):47-58.
doi: 10.1016/s0165-3806(01)00294-2.

Disruption of cell cycle kinetics and cyclin-dependent kinase system by ethanol in cultured cerebellar granule progenitors

Affiliations

Disruption of cell cycle kinetics and cyclin-dependent kinase system by ethanol in cultured cerebellar granule progenitors

Z Li et al. Brain Res Dev Brain Res. .

Abstract

An in vitro model of neuronal precursors, primary culture of cerebellar granule progenitors (CGPs), was used to investigate the mechanisms underlying ethanol-induced cell cycle damage. The CGP cultures were generated from 3-day-old rats. Ethanol significantly inhibited the proliferation of the CGPs in culture. Analysis of cell cycle kinetics by a cumulative 5-bromo-2'-deoxyuridine (BrdU) labeling technique demonstrated that ethanol exposure increased the duration of the cell cycle and decreased the growth fraction (the cycling population). The duration of the S-phase and total cell cycle was significantly prolonged by ethanol exposure by 220% and 135%, respectively, while the growth fraction was decreased from 44% in the control groups to 22% in the ethanol-exposed cultures. Cyclin-dependent kinase 2 (Cdk2) is a key protein that regulates both the passage from G1 into S, and the S phase progression. The results from in vitro phosphorylation assay and Western blot demonstrated that ethanol dramatically down-regulated both the activity and the expression of Cdk2. In addition, ethanol significantly decreased the expression of Cyclin A and Cyclin D(2). Further studies using in situ TUNEL assay and DNA fragmentation ELISA showed that ethanol caused a delayed apoptosis, i.e. the ethanol-induced apoptosis was evident only after chronic exposure. On the other hand, ethanol did not affect the necrotic index. In conclusion, ethanol decreases the cycling pool of CGPs by inducing cell cycle delay and promoting apoptosis. Ethanol-mediated disturbance of the cyclin-dependent kinase system may be an important mechanism to account for cell cycle arrest in neuronal precursor cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources