Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov;185(5):1198-203.
doi: 10.1067/mob.2001.118142.

Nitric oxide synthase gene knockout mice do not become hypertensive during pregnancy

Affiliations

Nitric oxide synthase gene knockout mice do not become hypertensive during pregnancy

E G Shesely et al. Am J Obstet Gynecol. 2001 Nov.

Abstract

Objective: The purpose of this study was to test whether omitting the vasodilator nitric oxide that is derived from any 1 of the 3 isoforms of nitric oxide synthase results in hypertension during pregnancy.

Study design: We measured systolic blood pressure before, during, and after pregnancy using an automated tail cuff method in 3 mutant (gene knockout) mouse strains in which the gene for neuronal nitric oxide, inducible nitric oxide, or endothelial nitric oxide was disrupted by gene targeting.

Results: In neuronal nitric oxide gene knockout mice (n = 10), blood pressure was 100 +/- 3 mm Hg, not significantly different from 101 +/- 3 mm Hg in matched wild-type control mice (n = 10). Pregnancy did not change blood pressure or heart rate in either group. In inducible nitric oxide gene knockout mice (n = 9), blood pressure was 110 +/- 3 mm Hg, the same as in the wild-type control mice (110 +/- 2 mm Hg; n = 14). Blood pressure was unaffected by pregnancy in either group of mice. However, heart rate was significantly less in knockout mice (647 +/- 11 beats/min vs 666 +/- 9 beats/min; P <.005); this difference persisted through pregnancy. In endothelial nitric oxide gene knockout mice (n = 8), blood pressure was higher before pregnancy (114 +/- 4 mm Hg vs 103 +/- 4 mm Hg; P <.05) than in wild-type control mice (n = 9), but this difference disappeared during pregnancy, returning only after delivery. Heart rates were not different before pregnancy and were unaffected by pregnancy.

Conclusion: There was no apparent increase in systolic blood pressure in any of the 3 nitric oxide synthase gene knockout strains during pregnancy compared to the wild-type control mice. This suggests that, at least in the mouse, genetic deficiency of any 1 isoform of nitric oxide synthase does not result in pregnancy-induced hypertension.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources