Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov 1;61(21):7792-7.

Identification of tumor markers in models of human colorectal cancer using a 19,200-element complementary DNA microarray

Affiliations
  • PMID: 11691794

Identification of tumor markers in models of human colorectal cancer using a 19,200-element complementary DNA microarray

P Hegde et al. Cancer Res. .

Abstract

Metastasis represents a crucial transition in disease development and progression and has a profound impact on survival for a wide variety of cancers. Cell line models of metastasis have played an important role in developing our understanding of the metastatic process. We used a 19,200-element human cDNA microarray to profile transcription in three paired cell-line models of colorectal tumor metastasis. By correlating expression patterns across these cell lines, we have identified 176 genes that appear to be differentially expressed (greater than 2-fold) in all highly metastatic cell lines relative to their reference. An analysis of these genes reiterates much of our understanding of the metastatic process and suggests additional genes, many of previously uncharacterized function, that may be causatively involved in, or at least prognostic of, metastasis. Northern analysis of a limited number of these genes validates the observed pattern of expression and suggests that further investigation and functional characterization of the identified genes is warranted.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources