Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region
- PMID: 11572780
- DOI: 10.1016/s0092-8674(01)00496-2
Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region
Abstract
The Eph receptor tyrosine kinase family is regulated by autophosphorylation within the juxtamembrane region and the kinase activation segment. We have solved the X-ray crystal structure to 1.9 A resolution of an autoinhibited, unphosphorylated form of EphB2 comprised of the juxtamembrane region and the kinase domain. The structure, supported by mutagenesis data, reveals that the juxtamembrane segment adopts a helical conformation that distorts the small lobe of the kinase domain, and blocks the activation segment from attaining an activated conformation. Phosphorylation of conserved juxtamembrane tyrosines would relieve this autoinhibition by disturbing the association of the juxtamembrane segment with the kinase domain, while liberating phosphotyrosine sites for binding SH2 domains of target proteins. We propose that the autoinhibitory mechanism employed by EphB2 is a more general device through which receptor tyrosine kinases are controlled.
Similar articles
-
Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses.Oncogene. 2000 Jan 13;19(2):177-87. doi: 10.1038/sj.onc.1203304. Oncogene. 2000. PMID: 10644995
-
Autoregulation by the juxtamembrane region of the human ephrin receptor tyrosine kinase A3 (EphA3).Structure. 2008 Jun;16(6):873-84. doi: 10.1016/j.str.2008.03.008. Structure. 2008. PMID: 18547520
-
Multiple in vivo tyrosine phosphorylation sites in EphB receptors.Biochemistry. 1999 Oct 26;38(43):14396-408. doi: 10.1021/bi991628t. Biochemistry. 1999. PMID: 10572014
-
Complex formation between EphB2 and Src requires phosphorylation of tyrosine 611 in the EphB2 juxtamembrane region.Oncogene. 1998 May;16(20):2657-70. doi: 10.1038/sj.onc.1201823. Oncogene. 1998. PMID: 9632142
-
Structure and mechanism of the G protein-coupled receptor kinases.J Biol Chem. 1993 Nov 15;268(32):23735-8. J Biol Chem. 1993. PMID: 8226899 Review. No abstract available.
Cited by
-
Ectopic EphA4 receptor induces posterior protrusions via FGF signaling in Xenopus embryos.Mol Biol Cell. 2004 Apr;15(4):1647-55. doi: 10.1091/mbc.e03-09-0674. Epub 2004 Jan 23. Mol Biol Cell. 2004. PMID: 14742708 Free PMC article.
-
The oncogenic activity of RET point mutants for follicular thyroid cells may account for the occurrence of papillary thyroid carcinoma in patients affected by familial medullary thyroid carcinoma.Am J Pathol. 2004 Aug;165(2):511-21. doi: 10.1016/S0002-9440(10)63316-0. Am J Pathol. 2004. PMID: 15277225 Free PMC article.
-
Discovery and characterization of targetable NTRK point mutations in hematologic neoplasms.Blood. 2020 Jun 11;135(24):2159-2170. doi: 10.1182/blood.2019003691. Blood. 2020. PMID: 32315394 Free PMC article.
-
Ephrin-independent regulation of cell substrate adhesion by the EphB4 receptor.Biochem J. 2009 Aug 27;422(3):433-42. doi: 10.1042/BJ20090014. Biochem J. 2009. PMID: 19552627 Free PMC article.
-
Tie2 and Eph receptor tyrosine kinase activation and signaling.Cold Spring Harb Perspect Biol. 2014 Mar 1;6(3):a009142. doi: 10.1101/cshperspect.a009142. Cold Spring Harb Perspect Biol. 2014. PMID: 24478383 Free PMC article. Review.
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous