Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug;31(8):2448-57.
doi: 10.1002/1521-4141(200108)31:8<2448::aid-immu2448>3.0.co;2-n.

The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol

Affiliations
Free article

The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol

C A Byrd-Leifer et al. Eur J Immunol. 2001 Aug.
Free article

Abstract

Taxol can mimic bacterial lipopolysaccharide (LPS) by activating mouse macrophages in a cell cycle-independent, LPS antagonist-inhibitable manner. Macrophages from C3H/HeJ mice, which have a spontaneous mutation in Toll-like receptor 4 (TLR4), are hyporesponsive to both LPS and Taxol, suggesting that LPS and Taxol may share a signaling pathway involving TLR4. To determine whether TLR4 and its interacting adaptor molecule MyD88 are necessary for Taxol's LPS mimetic actions, we examined Taxol responses of primary macrophages from genetically defective mice lacking either TLR4 (C57BL/10ScNCr) or MyD88 (MyD88 knockout). When stimulated with Taxol, macrophages from wild-type mice responded robustly by secreting both TNF and NO, while macrophages from either TLR4-deficient C57BL/10ScNCr mice or MyD88 knockout mice produced only minimal amounts of TNF and NO. Taxol-induced NF-kappa B-driven luciferase activity was reduced after transfection of RAW 264.7 macrophages with a dominant negative version of mouse MyD88. Taxol-induced microtubule-associated protein kinase (MAPK) activation and NF-kappa B nuclear translocation were absent from TLR4-null macrophages, but were preserved in MyD88 knockout macrophages with a slight delay in kinetics. Neither Taxol-induced NF-kappa B activation, nor I kappa B degradation was affected by the presence of phosphatidylinositol 3-kinase inhibitors. These results suggest that Taxol and LPS not only share a TLR4/MyD88-dependent pathway in generating inflammatory mediators, but also share a TLR4-dependent/MyD88-independent pathway leading to activation of MAPK and NF-kappa B.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources