Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun;114(Pt 11):2085-94.
doi: 10.1242/jcs.114.11.2085.

Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation

Affiliations

Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation

S Spinella-Jaegle et al. J Cell Sci. 2001 Jun.

Abstract

The proteins of the hedgehog (Hh) family regulate various aspects of development. Recently, members of this family have been shown to regulate skeletal formation in vertebrates and to control both chondrocyte and osteoblast differentiation. In the present study, we analyzed the effect of Sonic hedgehog (Shh) on the osteoblastic and adipocytic commitment/differentiation. Recombinant N-terminal Shh (N-Shh) significantly increased the percentage of both the pluripotent mesenchymal cell lines C3H10T1/2 and ST2 and calvaria cells responding to bone morphogenetic protein 2 (BMP-2), in terms of osteoblast commitment as assessed by measuring alkaline phosphatase (ALP) activity. This synergistic effect was mediated, at least partly, through the positive modulation of the transcriptional output of BMPs via Smad signaling. Furthermore, N-Shh was found to abolish adipocytic differentiation of C3H10T1/2 cells both in the presence or absence of BMP-2. A short treatment with N-Shh was sufficient to dramatically reduce the levels of the adipocytic-related transcription factors C/EBPalpha and PPARgamma in both C3H10T1/2 and calvaria cell cultures. Given the inverse relationship between marrow adipocytes and osteoblasts with aging, agonists of the Hh signaling pathway might constitute potential drugs for preventing and/or treating osteopenic disorders.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources