Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul 13;307(2):77-80.
doi: 10.1016/s0304-3940(01)01927-9.

Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse

Affiliations

Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse

H Wolburg et al. Neurosci Lett. .

Abstract

The choroid plexus epithelium forms the blood-cerebrospinal fluid (CSF) barrier and is responsible for the secretion of the CSF from the blood. The morphological correlate of the blood-CSF barrier are the tight junctions of choroid plexus epithelium. By freeze-fracture electron microscopy it has been demonstrated that choroid plexus epithelial tight junctions form parallel strands resembling those of Sertoli cells building the blood-testis barrier and those of the myelin sheaths of oligodendrocytes. As the oligodendrocyte specific protein/claudin-11 has been shown to be the central mediator of parallel-array tight junctions in Sertoli cells and myelin sheaths in mice, we asked whether claudin-11 is present in the tight junctions of choroid plexus epithelial cells of the mouse. Here, we present the first direct evidence that claudin-11 besides claudin-1 and -2, occludin and the zonula occludens protein ZO-1 is present in choroid plexus epithelial tight junctions. During inflammation in the central nervous system such as experimental autoimmune encephalomyelitis, the molecular composition of choroid plexus epithelial tight junctions does not change considerably. Their unique molecular composition, with claudin-11 accompanied by claudin-1 and claudin-2 points to a unique regulatory mechanism of the blood-CSF-barrier function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources