Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May 4;419(1):15-23.
doi: 10.1016/s0014-2999(01)00946-3.

Pharmacological characterization of the dermorphin analog [Dmt(1)]DALDA, a highly potent and selective mu-opioid peptide

Affiliations

Pharmacological characterization of the dermorphin analog [Dmt(1)]DALDA, a highly potent and selective mu-opioid peptide

C L Neilan et al. Eur J Pharmacol. .

Abstract

The dermorphin-derived peptide [Dmt(1)]DALDA (H-Dmt-D-Arg-Phe-Lys-NH(2)), labels mu-opioid receptors with high affinity and selectivity in receptor binding assays. In mouse, radiant heat tail-flick assay [Dmt(1)]DALDA produced profound spinal and supraspinal analgesia, being approximately 5000- and 100-fold more potent than morphine on a molar basis, respectively. When administered systemically, [Dmt(1)]DALDA was over 200-fold more potent than morphine. Pharmacologically, [Dmt(1)]DALDA was distinct from morphine. [Dmt(1)]DALDA displayed no cross-tolerance to morphine in the model used and it retained supraspinal analgesic activity in morphine-insensitive CXBK mice. Supraspinally, it also differed from morphine in its lack of sensitivity towards naloxonazine. Finally, in antisense mapping studies, [Dmt(1)]DALDA was insensitive to MOR-1 exon probes that reduced morphine analgesia, implying a distinct receptor mechanism of action. Thus, [Dmt(1)]DALDA is an interesting and extraordinarily potent, systemically active peptide analgesic, raising the possibility of novel approaches in the design of clinically useful drugs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources