Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;42(4):424-32.
doi: 10.1093/pcp/pce055.

Analysis of the phosphorylation level in guard-cell plasma membrane H+-ATPase in response to fusicoccin

Affiliations

Analysis of the phosphorylation level in guard-cell plasma membrane H+-ATPase in response to fusicoccin

T Kinoshita et al. Plant Cell Physiol. 2001 Apr.

Abstract

A fungal phytotoxin fusicoccin (FC) causes irreversible opening of stomata by activation of the plasma membrane H+-ATPase in guard cells. However, the mechanism by which FC activates the H+-ATPase is not fully understood with respect to the event of phosphorylation. In this study, we provide quantitative evidence that FC-dependent activation of H+-ATPase requires the phosphorylation of the C-terminus, and that FC maintains the activated state by preventing the dephosphorylation. The plasma membrane H+-ATPase in guard cells was phosphorylated on serine and threonine residues in the C-termini of both VHA1 and VHA2 by FC, and the phosphorylation level paralleled the rates of H+-pumping and ATP hydrolysis. An endogenous 14-3-3 protein was co-precipitated with the H+-ATPase, and the amount of 14-3-3 protein was proportional to the phosphorylation level of H+-ATPASE: The recombinant 14-3-3 protein bound to the C-terminus only when it was phosphorylated, even in the presence of FC. The phosphorylated C-terminus was dephosphorylated by alkaline phosphatase, and the dephosphorylation was completely prevented when the C-terminus had been incubated with both FC and 14-3-3 protein. The results suggest that FC activates the H+-ATPase by accumulating the complex of phosphorylated H+-ATPase and 14-3-3 protein through inhibition of the dephosphorylation in guard cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources