Characterization of implantable biosensor membrane biofouling
- PMID: 11225773
- DOI: 10.1007/s002160051556
Characterization of implantable biosensor membrane biofouling
Abstract
The material-tissue interaction that results from sensor implantation is one of the major obstacles in developing viable, long-term implantable biosensors. Strategies useful for the characterization and modification of sensor biocompatibility are widely scattered in the literature, and there are many peripheral studies from which useful information can be gleaned. The current paper reviews strategies suitable for addressing biofouling, one aspect of biosensor biocompatibility. Specifically, this paper addresses the effect of membrane biofouling on sensor sensitivity from the standpoint of glucose transport limitations. Part I discusses the in vivo and in vitro methods used to characterize biofouling and the effects of biofouling on sensor performance, while Part II presents techniques intended to improve biosensor biocompatibility.
Similar articles
-
Decreased analyte transport through implanted membranes: differentiation of biofouling from tissue effects.J Biomed Mater Res. 2001 Dec 15;57(4):513-21. doi: 10.1002/1097-4636(20011215)57:4<513::aid-jbm1197>3.0.co;2-e. J Biomed Mater Res. 2001. PMID: 11553881
-
Modeling the Physiological Factors Affecting Glucose Sensor Function in Vivo.J Diabetes Sci Technol. 2015 Jun 30;9(5):993-8. doi: 10.1177/1932296815593094. J Diabetes Sci Technol. 2015. PMID: 26134832 Free PMC article.
-
Foreign Body Reaction to Implantable Biosensors: Effects of Tissue Trauma and Implant Size.J Diabetes Sci Technol. 2015 Aug 25;9(5):966-77. doi: 10.1177/1932296815601869. J Diabetes Sci Technol. 2015. PMID: 26306495 Free PMC article.
-
A review of implantable biosensors for closed-loop glucose control and other drug delivery applications.Int J Pharm. 2018 Jun 15;544(2):319-334. doi: 10.1016/j.ijpharm.2018.02.022. Epub 2018 Feb 16. Int J Pharm. 2018. PMID: 29458204 Review.
-
Emerging synergy between nanotechnology and implantable biosensors: a review.Biosens Bioelectron. 2010 Mar 15;25(7):1553-65. doi: 10.1016/j.bios.2009.12.001. Epub 2009 Dec 11. Biosens Bioelectron. 2010. PMID: 20042326 Free PMC article. Review.
Cited by
-
Recent advances in continuous glucose monitoring: biocompatibility of glucose sensors for implantation in subcutis.J Diabetes Sci Technol. 2007 Sep;1(5):746-52. doi: 10.1177/193229680700100520. J Diabetes Sci Technol. 2007. PMID: 19885143 Free PMC article.
-
Anti-inflammatory polymeric coatings for implantable biomaterials and devices.J Diabetes Sci Technol. 2008 Nov;2(6):984-94. doi: 10.1177/193229680800200628. J Diabetes Sci Technol. 2008. PMID: 19885288 Free PMC article.
-
Nitric oxide-releasing/generating polymers for the development of implantable chemical sensors with enhanced biocompatibility.Talanta. 2008 May 15;75(3):642-50. doi: 10.1016/j.talanta.2007.06.022. Epub 2007 Jun 28. Talanta. 2008. PMID: 18585126 Free PMC article. Review.
-
Biomechanics of the sensor-tissue interface-effects of motion, pressure, and design on sensor performance and the foreign body response-part I: theoretical framework.J Diabetes Sci Technol. 2011 May 1;5(3):632-46. doi: 10.1177/193229681100500317. J Diabetes Sci Technol. 2011. PMID: 21722578 Free PMC article. Review.
-
A remotely operated drug delivery system with an electrolytic pump and a thermo-responsive valve.Biomicrofluidics. 2015 Jul 22;9(5):052608. doi: 10.1063/1.4927436. eCollection 2015 Sep. Biomicrofluidics. 2015. PMID: 26339328 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources