Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb;76(4):975-89.
doi: 10.1046/j.1471-4159.2001.00074.x.

In vivo (13)C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during

Affiliations
Free article

In vivo (13)C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during

N R Sibson et al. J Neurochem. 2001 Feb.
Free article

Abstract

The aims of this study were twofold: (i) to determine quantitatively the contribution of glutamate/glutamine cycling to total astrocyte/neuron substrate trafficking for the replenishment of neurotransmitter glutamate; and (ii) to determine the relative contributions of anaplerotic flux and glutamate/glutamine cycling to total glutamine synthesis. In this work in vivo and in vitro (13)C NMR spectroscopy were used, with a [2-(13)C]glucose or [5-(13)C]glucose infusion, to determine the rates of glutamate/glutamine cycling, de novo glutamine synthesis via anaplerosis, and the neuronal and astrocytic tricarboxylic acid cycles in the rat cerebral cortex. The rate of glutamate/glutamine cycling measured in this study is compared with that determined from re-analysis of (13)C NMR data acquired during a [1-(13)C]glucose infusion. The excellent agreement between these rates supports the hypothesis that glutamate/glutamine cycling is a major metabolic flux ( approximately 0.20 micromol/min/g) in the cerebral cortex of anesthetized rats and the predominant pathway of astrocyte/neuron trafficking of neurotransmitter glutamate precursors. Under normoammonemic conditions anaplerosis was found to comprise 19-26% of the total glutamine synthesis, whilst this fraction increased significantly during hyperammonemia ( approximately 32%). These findings indicate that anaplerotic glutamine synthesis is coupled to nitrogen removal from the brain (ammonia detoxification) under hyperammonemic conditions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources