Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb 16;88(3):325-32.
doi: 10.1161/01.res.88.3.325.

The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)-permeable cation channel

Affiliations

The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)-permeable cation channel

R Inoue et al. Circ Res. .

Abstract

The Drosophila transient receptor potential protein (TRP) and its mammalian homologues are thought to be Ca(2+)-permeable cation channels activated by G protein (G(q/11))-coupled receptors and are regarded as an interesting molecular model for the Ca(2+) entry mechanisms associated with stimulated phosphoinositide turnover and store depletion. However, there is little unequivocal evidence linking mammalian TRPs with particular native functions. In this study, we have found that heterologous expression of murine TRP6 in HEK293 cells reproduces almost exactly the essential biophysical and pharmacological properties of alpha(1)-adrenoceptor-activated nonselective cation channels (alpha(1)-AR-NSCC) previously identified in rabbit portal vein smooth muscle. Such properties include activation by diacylglycerol; S-shaped current-voltage relationship; high divalent cation permeability; unitary conductance of 25 to 30 pS and augmentation by flufenamate and Ca(2+); and blockade by Cd(2+), La(3+), Gd(3+), SK&F96365, and amiloride. Reverse transcriptase-polymerase chain reaction and confocal laser scanning microscopy using TRP6-specific primers and antisera revealed that the level of TRP6 mRNA expression was remarkably high in both murine and rabbit portal vein smooth muscles as compared with other TRP subtypes, and the immunoreactivity to TRP6 protein was localized near the sarcolemmal region of single rabbit portal vein myocytes. Furthermore, treatment of primary cultured portal vein myocytes with TRP6 antisense oligonucleotides resulted in marked inhibition of TRP6 protein immunoreactivity as well as selective suppression of alpha(1)-adrenoceptor-activated, store depletion-independent cation current and Ba(2+) influx. These results strongly indicate that TRP6 is the essential component of the alpha(1)-AR-NSCC, which may serve as a store depletion-independent Ca(2+) entry pathway during increased sympathetic activity.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources