Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Jan;11(1):92-106.
doi: 10.1111/j.1750-3639.2001.tb00384.x.

Viral induced demyelination

Affiliations
Review

Viral induced demyelination

S A Stohlman et al. Brain Pathol. 2001 Jan.

Abstract

Viral induced demyelination, in both humans and rodent models, has provided unique insights into the cell biology of oligodendroglia, their complex cell-cell interactions and mechanisms of myelin destruction. They illustrate mechanisms of viral persistence, including latent infections in which no infectious virus is readily evident, virus reactivation and viral-induced tissue damage. These studies have also provided excellent paradigms to study the interactions between the immune system and the central nervous system (CNS). Although of interest in their own right, an understanding of the diverse mechanisms used by viruses to induce demyelination may shed light into the etiology and pathogenesis of the common demyelinating disorder multiple sclerosis (MS). This notion is supported by the persistent view that a viral infection acquired during adolescence might initiate MS after a long period of quiescence. Demyelination in both humans and rodents can be initiated by infection with a diverse group of enveloped and non-enveloped RNA and DNA viruses (Table 1). The mechanisms that ultimately result in the loss of CNS myelin appear to be equally diverse as the etiological agents capable of causing diseases which result in demyelination. Although demyelination can be a secondary result of axonal loss, in many examples of viral induced demyelination, myelin loss is primary and associated with axonal sparing. This suggests that demyelination induced by viral infections can result from: 1) a direct viral infection of oligodendroglia resulting in cell death with degeneration of myelin and its subsequent removal; 2) a persistent viral infection, in the presence or absence of infectious virus, resulting in the loss of normal cellular homeostasis and subsequent oligodendroglial death; 3) a vigorous virus-specific inflammatory response wherein the virus replicates in a cell type other than oligodendroglia, but cytokines and other immune mediators directly damage the oligodendroglia or the myelin sheath; or 4) infection initiates activation of an immune response specific for either oligodendroglia or myelin components. Virus-induced inflammation may be associated with the processing of myelin or oligodendroglial components and their presentation to the host's own T cell compartment. Alternatively, antigenic epitopes derived from the viral proteins may exhibit sufficient homology to host components that the immune response to the virus activates autoreactive T cells, i.e. molecular mimicry. Although it is not clear that each of these potential mechanisms participates in the pathogenesis of human demyelinating disease, analysis of the diverse demyelinating viral infections of both humans and rodents provides examples of many of these potential mechanisms.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Adami C, Pooley J, Glomb J, Stecker E, Fazal F, Fleming JO, Baker SC (1995) Evolution of mouse hepatitis virus (MHV) during chronic infection: Quasispecies nature of the persisting MHV RNA. Virol 209:337–346. - PMC - PubMed
    1. Bailey OT, Pappenheimer AM, Cheever FS, Daniels JB (1949) A murine hepatitis virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin. II. Pathology. J Exp Med 90:195–212. - PMC - PubMed
    1. Barbano RL, Dal Canto MC (1984). Serum and cells from Theiler's virus‐infected mice fail to injure myelinating cultures or to produce in vivo transfer of diseases. The pathogenesis of Theiler's virus‐induced demyelination appears to differ from that of EAE. J Neurol Sci 66:283–293. - PubMed
    1. Begolka WS, Vanderlugt CL, Rahbe SM, Miller SD (1998) Differential expression of inflammatory cytokines parallels progression of central nervous system pathology in two clinically distinct models of multiple sclerosis. J Immunol 161:4437–4446. - PubMed
    1. Barac‐Latas V, Suchanek G, Breitschopf H, Stuehler A, Wege H, Lassmann H (1997) Patterns of oligodendrocyte pathology in coronavirus‐induced subacute demyelinating encephalomyelitis in the Lewis rat. Glia 19:1–12. - PubMed

Publication types

MeSH terms