Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Mar 30;276(13):10000-9.
doi: 10.1074/jbc.M009475200. Epub 2000 Dec 14.

Maximal rate and nucleotide dependence of rhodopsin-catalyzed transducin activation: initial rate analysis based on a double displacement mechanism

Affiliations
Free article

Maximal rate and nucleotide dependence of rhodopsin-catalyzed transducin activation: initial rate analysis based on a double displacement mechanism

M Heck et al. J Biol Chem. .
Free article

Abstract

Despite the growing structural information on receptors and G proteins, the information on affinities and kinetics of protein-protein and protein-nucleotide interactions is still not complete. In this study on photoactivated rhodopsin (R*) and the rod G protein, G(t), we have used kinetic light scattering, backed by direct biochemical assays, to follow G protein activation. Our protocol includes the following: (i) to measure initial rates on the background of rapid depletion of the G(t)GDP substrate; (ii) to titrate G(t)GDP, GTP, and GDP; and (iii) to apply a double displacement reaction scheme to describe the results. All data are simultaneously fitted by one and the same set of parameters. We obtain values of K(m) = 2200 G(t)/microm(2) for G(t)GDP and K(m) = 230 microm for GTP; dissociation constants are K(d) = 530 G(t)/microm(2) for R*-G(t)GDP dissociation and K(d) = 270 microm for GDP release from R*G(t)GDP, once formed. Maximal catalytic rates per photoexcited rhodopsin are 600 G(t)/s at 22 degrees C and 1300 G(t)/s at 34 degrees C. The analysis provides a tool to allocate and quantify better the effects of chemical or mutational protein modifications to individual steps in signal transduction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources