Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Dec;20(12):2573-8.
doi: 10.1161/01.atv.20.12.2573.

Coadministration of angiopoietin-1 and vascular endothelial growth factor enhances collateral vascularization

Affiliations
Comparative Study

Coadministration of angiopoietin-1 and vascular endothelial growth factor enhances collateral vascularization

J K Chae et al. Arterioscler Thromb Vasc Biol. 2000 Dec.

Abstract

Using growth factors to induce vasculogenesis is a promising approach in the treatment of ischemic legs and myocardium. Because the vasculogenesis requires a cascade of growth factors, their receptors, and intracellular signals, such therapies may require the application of more than a single growth factor. We examined the effect of 2 endothelial cell-specific growth factors, angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF), on primary cultured porcine coronary artery endothelial cells. VEGF, but not Ang1, increased DNA synthesis and cell number. Ang1 or VEGF induced migration and sprouting activity, increased plasmin and matrix metalloproteinase-2 secretion, and decreased tissue inhibitors of metalloproteinase type 2 secretion. A combination of the submaximal doses of Ang1 and VEGF enhanced these effects and was more potent than the maximal dose of either alone. In a rabbit ischemic hindlimb model, a combination of Ang1 and VEGF gene delivery produced an enhanced effect on resting and maximal blood flow and capillary formation that was greater than that of either factor alone. Angiographic analyses revealed that larger blood vessels were formed after gene delivery of Ang1 or Ang1 plus VEGF than after VEGF gene delivery. These results suggest that combined treatment of Ang1 and VEGF could be used to produce therapeutic vascularization.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources