Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Nov;127(22):4993-5005.
doi: 10.1242/dev.127.22.4993.

BMP and FGF regulate the development of EGF-responsive neural progenitor cells

Affiliations

BMP and FGF regulate the development of EGF-responsive neural progenitor cells

L Lillien et al. Development. 2000 Nov.

Abstract

Temporal changes in progenitor cell responses to extrinsic signals play an important role in development, but little is known about the mechanisms that determine how these changes occur. In the rodent CNS, expression of epidermal growth factor receptors (EGFRs) increases during embryonic development, conferring mitotic responsiveness to EGF among multipotent stem cells. Here we show that cell-cell signaling controls this change. Whereas EGF-responsive stem cells develop on schedule in explant and aggregate cultures of embryonic cortex, co-culture with younger cortical cells delays their development. Exogenous BMP4 mimics the effect of younger cells, reversibly inhibiting changes in EGFR expression and responsiveness. Moreover, blocking endogenous BMP receptors in progenitors with a virus transducing dnBMPR1B accelerates changes in EGFR signaling. This involves a non-cell-autonomous mechanism, suggesting that BMP negatively regulates signal(s) that promote the development of EGF-responsive stem cells. FGF2 is a good candidate for such a signal, as we find that it antagonizes the inhibitory effects of younger cortical cells and exogenous BMP4. These findings suggest that a balance between antagonistic extrinsic signals regulates temporal changes in an intrinsic property of neural progenitor cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms