Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000;35(9):665-72.
doi: 10.1007/s005350070045.

Hepatic stellate cells: a target for the treatment of liver fibrosis

Affiliations
Review

Hepatic stellate cells: a target for the treatment of liver fibrosis

J Wu et al. J Gastroenterol. 2000.

Abstract

Hepatic fibrosis is a wound-healing process that occurs when the liver is injured chronically. Hepatic stellate cells (HSC) are responsible for the excess production of extracellular matrix (ECM) components. The activation of HSC, a key issue in the pathogenesis of hepatic fibrosis, is mediated by various cytokines and reactive oxygen species released from the damaged hepatocytes and activated Kupffer cells. Therefore, inhibition of HSC activation and its related subsequent events, such as increased production of ECM components and enhanced proliferation, are crucial goals for intervention in the hepatic fibrogenesis cascade. This is especially true when the etiology is unknown or there is no established therapy for the cause of the chronic injury. This review explores the rationale for choosing HSC as a target for the pharmacological, molecular, and other novel therapeutics for hepatic fibrosis. One focus of this review is the inhibition of two cytokines, transforming growth factor-beta and platelet-derived growth factor, which are important in hepatic fibrogenesis. A number of new agents, such as Chinese herbal recipes and herbal extracts, silymarin, S-adenosyl-L-methionine, polyenylphosphatidylcholine, and pentoxifylline are also discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources