Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug 15;68(1):71-9.
doi: 10.1006/geno.2000.6258.

Isolation and characterization of a human chromosome 21q22.3 gene (WDR4) and its mouse homologue that code for a WD-repeat protein

Affiliations

Isolation and characterization of a human chromosome 21q22.3 gene (WDR4) and its mouse homologue that code for a WD-repeat protein

J Michaud et al. Genomics. .

Abstract

To identify candidate genes for Down syndrome phenotypes or disorders that map to human chromosome 21q22.3, trapped exons are being used to isolate full-length transcripts. We isolated a full-length cDNA (WDR4) encoding a novel WD-repeat protein and its mouse homologue. Two RNA species of 1.5 and 2.1 kb were observed in human, with the 1.5-kb transcript being produced by a splicing event after the stop codon, and thus both transcripts encode the same putative 412-amino-acid protein containing four guanine nucleotide-binding WD repeats. The more highly expressed 1.5-kb transcript was expressed mainly in fetal tissues while the 2.1-kb transcript showed a faint expression in most tissues. Two additional alternative splicing events of 270 and 52 nt within the coding region were observed. The WDR4 gene spans 37 kb and is divided into 11 coding exons. WDR4 maps between PDE9A and NDUFV3, a region where several genetic disorders, including a form of manic-depressive psychosis, also map, and seven sequence variants observed in the WDR4 gene could be used in association studies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms