Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul 22;9(12):1729-38.
doi: 10.1093/hmg/9.12.1729.

The motor and tail regions of myosin XV are critical for normal structure and function of auditory and vestibular hair cells

Affiliations

The motor and tail regions of myosin XV are critical for normal structure and function of auditory and vestibular hair cells

D W Anderson et al. Hum Mol Genet. .

Abstract

Recessive mutations in myosin 15, a class XV unconventional myosin, cause profound congenital deafness in humans and both deafness and vestibular dysfunction in mice homozygous for the shaker 2 and shaker 2(J) alleles. The shaker 2 allele is a previously described missense mutation of a highly conserved residue in the motor domain of myosin XV. The shaker 2(J) lesion, in contrast, is a 14.7 kb deletion that removes the last six exons from the 3"-terminus of the Myo15 transcript. These exons encode a FERM (F, ezrin, radixin and moesin) domain that may interact with integral membrane proteins. Despite the deletion of six exons, Myo15 mRNA transcripts and protein are present in the post-natal day 1 shaker 2(J) inner ear, which suggests that the FERM domain is critical for the development of normal hearing and balance. Myo15 transcripts are first detectable at embryonic day 13.5 in wild-type mice. Myo15 transcripts in the mouse inner ear are restricted to the sensory epithelium of the developing cristae ampularis, macula utriculi and macula sacculi of the vestibular system as well as to the developing organ of Corti. Both the shaker 2 and shaker 2(J) alleles result in abnormally short hair cell stereocilia in the cochlear and vestibular systems. This suggests that Myo15 may be important for both the structure and function of these sensory epithelia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources