Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul;279(1):L143-51.
doi: 10.1152/ajplung.2000.279.1.L143.

Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor

Affiliations
Free article

Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor

R Wang et al. Am J Physiol Lung Cell Mol Physiol. 2000 Jul.
Free article

Abstract

Angiotensin-converting enzyme is involved in apoptosis of alveolar epithelial cells (Wang R, Zagariya A, Ang E, Ibarra-Sunga O, and Uhal BD. Am J Physiol Lung Cell Mol Physiol 277: L1245-L1250, 1999). This study tested the ability of the angiotensin-converting enzyme inhibitor captopril or the caspase inhibitor Z-Val-Ala-Asp-fluoromethylketone (ZVAD-fmk) to block alveolar epithelial cell apoptosis and lung fibrosis in vivo in response to bleomycin (Bleo). Male Wistar rats received 8 U/kg of Bleo (bleomycin sulfate) or vehicle intratracheally. Subgroups of Bleo-treated rats received captopril, ZVAD-fmk, or vehicle alone. Lung collagen was assessed by picrosirius red or hydroxyproline assay at 1, 7, and 14 days post-Bleo, and apoptosis was detected by in situ end labeling (ISEL). Bleo increased alveolar septal and peribronchial collagen by 100 and 133%, respectively (both P < 0.01), by day 14 but not earlier. In contrast, ISEL was increased in alveolar and airway cells at all time points. Captopril or ZVAD-fmk inhibited collagen accumulation by 91 and 85%, respectively (P < 0. 01). Both agents also inhibited ISEL in alveoli by 99 and 81% and in airways by 67 and 63%, respectively. These data suggest that the efficacy of captopril to inhibit experimental lung fibrogenesis is related to inhibition of apoptosis. They also demonstrate the antifibrotic potential of a caspase inhibitor.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources