Fundamental patterns underlying gene expression profiles: simplicity from complexity
- PMID: 10890920
- PMCID: PMC26961
- DOI: 10.1073/pnas.150242097
Fundamental patterns underlying gene expression profiles: simplicity from complexity
Abstract
Analysis of previously published sets of DNA microarray gene expression data by singular value decomposition has uncovered underlying patterns or "characteristic modes" in their temporal profiles. These patterns contribute unequally to the structure of the expression profiles. Moreover, the essential features of a given set of expression profiles are captured using just a small number of characteristic modes. This leads to the striking conclusion that the transcriptional response of a genome is orchestrated in a few fundamental patterns of gene expression change. These patterns are both simple and robust, dominating the alterations in expression of genes throughout the genome. Moreover, the characteristic modes of gene expression change in response to environmental perturbations are similar in such distant organisms as yeast and human cells. This analysis reveals simple regularities in the seemingly complex transcriptional transitions of diverse cells to new states, and these provide insights into the operation of the underlying genetic networks.
Figures
Similar articles
-
Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models.Bioinformatics. 2008 Apr 1;24(7):932-42. doi: 10.1093/bioinformatics/btm639. Epub 2008 Feb 21. Bioinformatics. 2008. PMID: 18292116
-
Detecting biological associations between genes based on the theory of phase synchronization.Biosystems. 2008 May;92(2):99-113. doi: 10.1016/j.biosystems.2007.12.006. Epub 2008 Jan 11. Biosystems. 2008. PMID: 18289772
-
Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.BMC Bioinformatics. 2006 Jul 4;7:330. doi: 10.1186/1471-2105-7-330. BMC Bioinformatics. 2006. PMID: 16817975 Free PMC article.
-
Dynamic models of gene expression and classification.Funct Integr Genomics. 2001 Mar;1(4):269-78. doi: 10.1007/s101420000035. Funct Integr Genomics. 2001. PMID: 11793246
-
Identifying regulatory networks by combinatorial analysis of promoter elements.Nat Genet. 2001 Oct;29(2):153-9. doi: 10.1038/ng724. Nat Genet. 2001. PMID: 11547334
Cited by
-
A review on trends in development and translation of omics signatures in cancer.Comput Struct Biotechnol J. 2024 Feb 3;23:954-971. doi: 10.1016/j.csbj.2024.01.024. eCollection 2024 Dec. Comput Struct Biotechnol J. 2024. PMID: 38385061 Free PMC article. Review.
-
Gene communities in co-expression networks across different tissues.PLoS Comput Biol. 2023 Nov 17;19(11):e1011616. doi: 10.1371/journal.pcbi.1011616. eCollection 2023 Nov. PLoS Comput Biol. 2023. PMID: 37976327 Free PMC article.
-
Gene communities in co-expression networks across different tissues.ArXiv [Preprint]. 2023 Dec 7:arXiv:2305.12963v2. ArXiv. 2023. Update in: PLoS Comput Biol. 2023 Nov 17;19(11):e1011616. doi: 10.1371/journal.pcbi.1011616. PMID: 37292479 Free PMC article. Updated. Preprint.
-
Multi-Omics Data Fusion via a Joint Kernel Learning Model for Cancer Subtype Discovery and Essential Gene Identification.Front Genet. 2021 Mar 4;12:647141. doi: 10.3389/fgene.2021.647141. eCollection 2021. Front Genet. 2021. PMID: 33747053 Free PMC article.
-
MOGSA: Integrative Single Sample Gene-set Analysis of Multiple Omics Data.Mol Cell Proteomics. 2019 Aug 9;18(8 suppl 1):S153-S168. doi: 10.1074/mcp.TIR118.001251. Epub 2019 Jun 26. Mol Cell Proteomics. 2019. PMID: 31243065 Free PMC article.
References
-
- Schena M, Shalon D, Davis R W, Brown P O. Science. 1995;270:467–470. - PubMed
-
- Iyer V R, Eisen M B, Ross D T, Schuler G, Moore T, Lee J C F, Trent J M, Staudt L M, Hudson J, Jr, Boguski M S, et al. Science. 1999;283:83–87. - PubMed
-
- Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown P O, Herskowitz I. Science. 1998;282:699–705. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases