Assessing the accuracy of prediction algorithms for classification: an overview
- PMID: 10871264
- DOI: 10.1093/bioinformatics/16.5.412
Assessing the accuracy of prediction algorithms for classification: an overview
Abstract
We provide a unified overview of methods that currently are widely used to assess the accuracy of prediction algorithms, from raw percentages, quadratic error measures and other distances, and correlation coefficients, and to information theoretic measures such as relative entropy and mutual information. We briefly discuss the advantages and disadvantages of each approach. For classification tasks, we derive new learning algorithms for the design of prediction systems by directly optimising the correlation coefficient. We observe and prove several results relating sensitivity and specificity of optimal systems. While the principles are general, we illustrate the applicability on specific problems such as protein secondary structure and signal peptide prediction.
Similar articles
-
Accuracy-based learning classifier systems: models, analysis and applications to classification tasks.Evol Comput. 2003 Fall;11(3):209-38. doi: 10.1162/106365603322365289. Evol Comput. 2003. PMID: 14558911
-
Advanced search algorithms for information-theoretic learning with kernel-based estimators.IEEE Trans Neural Netw. 2004 Jul;15(4):874-84. doi: 10.1109/TNN.2004.828769. IEEE Trans Neural Netw. 2004. PMID: 15461080
-
Impact of descriptor vector scaling on the classification of drugs and nondrugs with artificial neural networks.J Mol Model. 2004 Jun;10(3):204-11. doi: 10.1007/s00894-004-0186-9. Epub 2004 Apr 6. J Mol Model. 2004. PMID: 15067522
-
Deep neural networks in psychiatry.Mol Psychiatry. 2019 Nov;24(11):1583-1598. doi: 10.1038/s41380-019-0365-9. Epub 2019 Feb 15. Mol Psychiatry. 2019. PMID: 30770893 Review.
-
Supervised learning with decision tree-based methods in computational and systems biology.Mol Biosyst. 2009 Dec;5(12):1593-605. doi: 10.1039/b907946g. Epub 2009 Oct 5. Mol Biosyst. 2009. PMID: 20023720 Review.
Cited by
-
Comparative Study of Single-stranded Oligonucleotides Secondary Structure Prediction Tools.BMC Bioinformatics. 2023 Nov 8;24(1):422. doi: 10.1186/s12859-023-05532-5. BMC Bioinformatics. 2023. PMID: 37940855 Free PMC article.
-
Study on Genotyping Polymorphism and Sequencing of N-Acetyltransferase 2 (NAT2) among Al-Ahsa Population.Biomed Res Int. 2020 Jun 15;2020:8765347. doi: 10.1155/2020/8765347. eCollection 2020. Biomed Res Int. 2020. PMID: 32626768 Free PMC article.
-
Comparative study of machine learning methods for modeling associations between risk factors and future dementia cases.Geroscience. 2024 Feb;46(1):737-750. doi: 10.1007/s11357-023-01040-9. Epub 2023 Dec 23. Geroscience. 2024. PMID: 38135769 Free PMC article.
-
Prediction of cytogenetic abnormalities with gene expression profiles.Blood. 2012 May 24;119(21):e148-50. doi: 10.1182/blood-2011-10-388702. Epub 2012 Apr 10. Blood. 2012. PMID: 22496154 Free PMC article.
-
Quantification of thrombus hounsfield units on noncontrast CT predicts stroke subtype and early recanalization after intravenous recombinant tissue plasminogen activator.AJNR Am J Neuroradiol. 2012 Jan;33(1):90-6. doi: 10.3174/ajnr.A2878. Epub 2011 Dec 8. AJNR Am J Neuroradiol. 2012. PMID: 22158924 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources