Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr 27;404(6781):1014-8.
doi: 10.1038/35010020.

Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis

Affiliations

Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis

M Tang et al. Nature. .

Abstract

The expression of the Escherichia coli DNA polymerases pol V (UmuD'2C complex) and pol IV (DinB) increases in response to DNA damage. The induction of pol V is accompanied by a substantial increase in mutations targeted at DNA template lesions in a process called SOS-induced error-prone repair. Here we show that the common DNA template lesions, TT (6-4) photoproducts, TT cis-syn photodimers and abasic sites, are efficiently bypassed within 30 seconds by pol V in the presence of activated RecA protein (RecA*), single-stranded binding protein (SSB) and pol III's processivity beta,gamma-complex. There is no detectable bypass by either pol IV or pol III on this time scale. A mutagenic 'signature' for pol V is its incorporation of guanine opposite the 3'-thymine of a TT (6-4) photoproduct, in agreement with mutational spectra. In contrast, pol III and pol IV incorporate adenine almost exclusively. When copying undamaged DNA, pol V exhibits low fidelity with error rates of around 10(-3) to 10(-4), with pol IV being 5- to 10-fold more accurate. The effects of RecA protein on pol V, and beta,gamma-complex on pol IV, cause a 15,000- and 3,000-fold increase in DNA synthesis efficiency, respectively. However, both polymerases exhibit low processivity, adding 6 to 8 nucleotides before dissociating. Lesion bypass by pol V does not require beta,gamma-complex in the presence of non-hydrolysable ATPgammaS, indicating that an intact RecA filament may be required for translesion synthesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources