Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 May 1;164(9):4443-51.
doi: 10.4049/jimmunol.164.9.4443.

Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells

Affiliations

Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells

L Piemonti et al. J Immunol. .

Abstract

We studied the effects of 1alpha,25-dihydroxyvitamin D3 (1alpha, 25-(OH)2D3) on differentiation, maturation, and functions of dendritic cells (DC) differentiated from human monocytes in vitro in the presence of GM-CSF and IL-4 for 7 days. Recovery and morphology were not affected by 1alpha,25-(OH)2D3 up to 100 nM. DC differentiated in the presence of 10 nM 1alpha,25-(OH)2D3 (D3-DC) showed a marked decrease in the expression of CD1a, while CD14 remained elevated. Mannose receptor and CD32 were significantly increased, and this correlated with an enhancement of endocytic activity. Costimulatory molecules such as CD40 and CD86 were slightly decreased or nonsignificantly affected (CD80 and MHC II). However, after induction of DC maturation with LPS or incubation with CD40 ligand-transfected cells, D3-DC showed marginal increases in MHC I, MHC II, CD80, CD86, CD40, and CD83. The accessory cell function of D3-DC in classical MLR was also inhibited. Moreover, allogeneic T cells stimulated with D3-DC were poor responders in a second MLR to untreated DC from the same or an unrelated donor, thus indicating the onset of a nonspecific hyporesponsivity. In conclusion, our data suggest that 1alpha,25-(OH)2D3 may modulate the immune system, acting at the very first step of the immune response through the inhibition of DC differentiation and maturation into potent APC.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms