Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Apr;39(2):153-69.
doi: 10.1016/s0920-1211(99)00121-7.

Seizures and neuronal damage in mice lacking vesicular zinc

Affiliations

Seizures and neuronal damage in mice lacking vesicular zinc

T B Cole et al. Epilepsy Res. 2000 Apr.

Abstract

Synaptically released zinc has neuromodulatory capabilities that could result in either inhibition or enhancement of neuronal excitability. To determine the net effects of vesicular zinc release in the brain in vivo, we examined seizure susceptibility and seizure-related neuronal damage in mice with targeted disruption of the gene encoding the zinc transporter, ZnT3 (ZnT3-/- mice). ZnT3-/- mice, which lack histochemically reactive zinc in synaptic vesicles, had slightly higher thresholds to seizures elicited by the GABA(A) antagonist, bicuculline, and no differences in seizure threshold were seen in response to pentylenetetrazol or flurothyl. However, ZnT3-/- mice were much more susceptible than wild-type mice to limbic seizures elicited by kainic acid, suggesting that the net effect of hippocampal zinc on acute seizures in vivo is inhibitory. The hippocampi of ZnT3-/- mice showed typical seizure-related neuronal damage in response to kainic acid, demonstrating that damage to the targets of zinc-containing neurons can occur independently of synaptically released zinc. Mice lacking the neuronal zinc-binding protein metallothionein III (MT-III) are also more susceptible to kainic acid-induced seizures. Double knockout (ZnT3 and MT3) mice show the same response to kainic acid as ZnT3-/- mice, suggesting that ZnT3 and MT-III function in the same pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources