Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Feb 15;38(3):261-72.

Water penetration and escape in proteins

Affiliations
  • PMID: 10713987

Water penetration and escape in proteins

A E García et al. Proteins. .

Abstract

The kinetics of water penetration and escape in cytochrome c (cyt c) is studied by molecular dynamics (MD) simulations at various temperatures. Water molecules that penetrate the protein interior during the course of an MD simulation are identified by monitoring the number of water molecules in the first coordination shell (within 3.5 A) of each water molecule in the system. Water molecules in the interior of cyt c have 0-3 water molecules in their first hydration shell and this coordination number persists for extended periods of time. At T = 300 K we identify over 200 events in which water molecules penetrate the protein and reside inside for at least 5 picoseconds (ps) within a 1.5 nanoseconds (ns) time period. Twenty-seven (27) water molecules reside for at least 300 ps, 17 water molecules reside in the protein interior for times longer than 500 ps, and two interior water molecules do not escape; at T = 360 K one water molecule does not escape; at 430 K all water molecules exchange. Some of the internal water molecules show mean square displacements (MSD) of 1 A2 characteristic of structural waters. Others show MSD as large as 12 A2, suggesting that some of these water molecules occupy transient cavities and diffuse extensively within the protein. Motions of protein-bound water molecules are rotationally hindred, but show large librations. Analysis of the kinetics of water escape in terms of a survival time correlation function shows a power law behavior in time that can be interpreted in terms of a broad distribution of energy barriers, relative to kappa BT, for water exchange. At T = 300 K estimates of the roughness of the activation energy distribution is 4-10 kJ/mol (2-4 kappa BT). Activation enthalpies for water escape are 6-23 kJ/mol. The difference in activation entropies between fast exchanging (0.01 ns) and slow exchanging (0.1-1 ns) water molecules is -27 J/K/mol. Dunitz (Science 1997;264:670.) has estimated the maximum entropy loss of a water molecule due to binding to be 28 J/K/mol. Therefore, our results suggest that the entropy of interior water molecules is similar to entropy of bulk water.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources